


Lecture Notes in Bioinformatics 4774
Edited by S. Istrail, P. Pevzner, and M. Waterman

Editorial Board: A. Apostolico S. Brunak M. Gelfand
T. Lengauer S. Miyano G. Myers M.-F. Sagot D. Sankoff
R. Shamir T. Speed M. Vingron W. Wong

Subseries of Lecture Notes in Computer Science



Jagath C. Rajapakse Bertil Schmidt
Gwenn Volkert (Eds.)

Pattern Recognition
in Bioinformatics

Second IAPR InternationalWorkshop, PRIB 2007
Singapore, October 1-2, 2007
Proceedings

13



Series Editors

Sorin Istrail, Brown University, Providence, RI, USA
Pavel Pevzner, University of California, San Diego, CA, USA
Michael Waterman, University of Southern California, Los Angeles, CA, USA

Volume Editors

Jagath C. Rajapakse
Nanyang Technolocial University, Singapore
E-mail: asjagath@ntu.edu.sg

Bertil Schmidt
University of New South Wales Asia, Singapore
E-mail: bertil.schmidt@unswasia.edu.sg

Gwenn Volkert
Kent State University, USA
E-mail: volkert@cs.kent.edu

Library of Congress Control Number: Applied for

CR Subject Classification (1998): H.2.8, I.5, I.4, J.3, I.2, H.3, F.1-2

LNCS Sublibrary: SL 8 – Bioinformatics

ISSN 0302-9743
ISBN-10 3-540-75285-4 Springer Berlin Heidelberg New York
ISBN-13 978-3-540-75285-1 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media

springer.com

© Springer-Verlag Berlin Heidelberg 2007
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 12166909 06/3180 5 4 3 2 1 0



Preface 

The advancements of computational and informational techniques have enabled in 
silico testing of many lab-based experiments in life sciences before performing them 
in in vitro or in vivo. Though computational techniques are not capable of mimicking 
all wet-lab experiments, bioinformatics will inevitably play a major role in future 
medical practice. For example, in the pursuit of new drugs it can reduce the costs and 
complexity involved in expensive wet-lab experiments. It is expected that by 2010, 
sequencing of individual genomes will be affordable generating an unprecedented 
increase of life sciences data, in the form of sequences, expressions, networks, 
images, literature. Pattern recognition techniques lie at the heart of discovery of new 
insights into biological knowledge, as the presence of particular patterns or structure 
is often an indication of its function. 

The aim of the workshop series Pattern Recognition in Bioinformatics (PRIB) is to 
bring pattern recognition scientists and life scientists together to promote pattern 
recognition applications to solve life sciences problems. This volume presents the 
proceedings of the 2nd IAPR Workshop PRIB 2007 held in Singapore, October 1–2, 
2007. It includes 38 technical contributions that were selected by the International 
Program Committee from 125 submissions. Each of these rigorously reviewed papers 
was presented orally at the workshop. The proceedings consists of six parts. Part 1: 
Sequence Analysis; Part 2: Prediction of Protein Structure, Interaction, and 
Localization; Part 3: Gene Expression Analysis; Part 4: Pathway Analysis; Part 5: 
Medical Informatics; and Part 6: Bioimaging. 

 
Part 1 of the proceedings contains seven chapters on sequence analysis. Tang et al. 
propose a new design of BLAST-based gene ontology (GO) term annotator which 
incorporates data mining techniques and rough sets to deduce biological functions 
from DNA sequences. A design of ClustalW, using field programmable gate arrays 
(FPGA) is developed by Aung et al. to perform sequence alignment in real-time 
applications. Stepanova, Lin, and Lin develop a two-phase artificial neural network, 
and present its FPGA implementation, for genome-wide detection of response 
elements in steroid hormone receptors. Greene, Bill, and Moore propose an expert 
knowledge-guided mutation operator for the detection of genome-wide variations of 
DNA, using genetic programming. Luthra et al. find a conserved motif PMNYM of 
the transmembrane TM5 domain involved in dimerization of the A2a receptor, with a 
PROSITE search. Deng, Deng, and Havukkala find a strong GC and AT skew 
correlation in the chicken genome, using a novel visualization technique. Pearson et 
al. compare interval mapping to a hierarchical Bayesian method for quantitative trait 
loci analysis on Arabidopsis thaliana. 

  
Part 2 of the proceedings contains nine chapters on the prediction of protein structure, 
interaction, and localization. Shi et al. propose multiple support vector machines 
(SVM) to handle different features and then decision templates to combine 
predictions so as to detect protein subcellular localization. Hoque, Chetty, and Dooley 
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propose a generalized schemata theorem incorporating twin removal for genetic 
algorithms (GA) to predict protein structure. Zhang, Wei, and Ding use a fuzzy SVM 
to improve the prediction of structural classes of low-homology proteins. Singh and 
Ramani demonstrate a method to predict right-handed β-helix fold from protein 
sequences using SVM and report improved performance measures.  

Taguchi and Gromiha investigate several amino acid features and find amino acid 
occurrences improve the recognition of protein fold recognition significantly over the 
other features. Ou, Shao, and Chen propose an efficient RBF network to identify 
interface residues of interacting proteins, based on PSSM profiles and biochemical 
properties. Ahmad presents dynamic outlier exclusion training algorithm for neural 
networks to enhance sequence-based predictions in residue level protein properties. 
Gromiha analyzes amino acid sequences of transmembrane β barrel proteins (TMBs) 
and finds a significantly higher occurrence of Ser, Asn and Gln in TMBs than in 
globular proteins. Ahmed estimates the evolutionary average hydrophobicity profile 
from a family of protein sequences.  

 
Part 3 of the proceedings contains nine chapters on gene expression analysis. Yuriy et 
al. develop an online database for Affymetrix probe mapping and annotation (APMA) 
for interactive access, search, and visualization of target sequences mapping and 
annotation. Blanco, Martin-Merino, and Rivas combine different kinds of 
dissimilarity-based classifiers for the identification of cancerous samples from 
microarray data and illustrate its efficacy over existing classifiers. Stiglic, Khan, and 
Kokol propose small ensemble classifiers to visually interpret microarray data for 
easy comprehension of their functionality. The method is illustrated in a case-study of 
leukemia samples. Zhou et al. propose ant-MST, an ant-based minimum spanning tree 
for gene expression data clustering. McGarry, Sarfraz, and McIntyre integrate GO 
measures to SOM classification of gene expression data to obtain biologically 
meaningful clusters of genes.  

Teng and Chan find order preserving clusters in gene expression data by 
converting each gene vector into an ordered label sequence. A method is then 
proposed by finding the frequent orders by iteratively combining the most frequent 
prefixes and suffixes in a statistical way. Mao and Tang propose correlation-based 
relevancy and redundancy measures for efficient gene selection and show promising 
results in six gene expression problems. Mundra and Rajapakse present relevancy and 
redundancy criteria for gene selection with an SVM-recursive feature elimination 
(RFE) method which selects gene subsets with better classification accuracy and 
generalization capability compared to the SVM-RFE method. Oja obtains digital 
expression profiles of human endogenous retroviruses. 

 
Part 4 of the proceedings contains four chapters on pathway analysis. Ram and Chetty 
propose a framework for path analysis in gene regulatory networks by first finding the 
network structure by causal modeling and then enhancing the network by post-
processing. Sehgal et al. reconstruct transcriptional gene regulatory network 
reconstruction through cross-platform fusion of gene networks. Ling et al. reconstruct 
protein–protein interaction pathways by mining subject-verb-objects intermediates in 
biological texts. Chaturvedi, Sakharkar, and Rajapakse propose a validation technique 
for gene regulatory networks with protein–protein interaction data by using a GA. 
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They demonstrate the potential of the method in an application to cell-cycle 
regulation. 

 
Part 5 of the proceedings contains four chapters in medical informatics. Kurzynski 
and Zolnierek introduce and compare rough set- and fuzzy set-based methods for 
sequential medical diagnostic problems. Perumal, Lim and Sakharkar propose a 
comparative genomic approach for metabolic pathway analysis for in silico 
identification of putative drug targets in Pseudomonas aeruginosa. You et al. compare 
four methods of affinity prediction models for HLA-binding peptides and T-cell 
epitope identification, and find that non-liner models perform better than linear 
predictors. Rajapakse and Feng propose a method to identify peptides binding to 
MHC molecules by simultaneously optimizing entropy and evolutionary distance. 
Further, the binding motifs are determined by the optimal alignment of binding sites.  

 
Part 6 of the proceedings contains five chapters on bioimaging. Dufour et al. develop a 
automated nuclear morphometric analysis of 3D fluorescence microscopy images by 
using active meshes. They also propose shape descriptors and evaluate their robustness 
and independence on fluorescent beads and on two cell lines. Kumar and Rajapakse 
propose a time-frequency-based method for detection of activation in functional MRI 
time-series and discuss the advantages over earlier methods. Dehzangi, Zolghadri, and 
Boostani develop a weighted distance neural network for high-performance 
classification of two imagery tasks in the cue-based brain computer interface. Zheng 
and Rajapakse tract the anatomical connectivity of the brain, using sequential sampling 
and resampling of diffusion tensor MR images.  The method does not adopt fractional 
anisotropy as the stopping criteria and regularizes the fiber-tracking process by 
assigning high confidence values at low curvature points. Gong et al. develop an 
automated pipeline for classification of CT brain images of different head trauma, 
which is useful for building a content-based medical image retrieval system.  

We would like to sincerely thank all authors who spent their time and effort to 
make important contributions to this book. Many thanks go to the reviewers whose 
comments have enhanced the quality of the chapters. Our gratitude also goes to the 
LNBI editors and the managing editor for their most kind support and help in editing 
this book. 

We would also like to thank all individuals and institutions that contributed to the 
success of PRIB 2007, especially the authors for submitting the papers and all the 
sponsors for generously providing financial support for the workshop. We are very 
grateful to IAPR for the sponsorship and the IAPR Technical Committee (TC-20) on 
Pattern Recognition for Bioinformatics for their support and advice. Our gratitude 
goes to the School of Computer Engineering, Nanyang Technological University, 
Singapore, for supporting the workshop in many ways. 

We would like to express our gratitude to all PRIB 2007 International Program 
Committee members and other invited reviewers for their objective and thorough 
reviews of the submitted papers. We fully appreciate the PRIB 2007 Organizing 
Committee for their time and excellent work. We thank Publicity Co-chairs, Feng Lin 
and Sy Loi Ho, for their hard work in getting the proceedings ready on time. We are 
grateful to Norhana Ahmad, PRIB 2007 secretary, for coordinating all the logistics of 
the workshop. Our thanks also go to Ang Linda for maintaining the workshop Web 
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site, Tan Sing Yau for the technical support, and Jean Tan for his help in graphics 
design. 

Last but not least, we wish to convey our sincere thanks to Springer for providing 
excellent professional support in preparing this volume. 

 

 
October 2007                                                                                    Jagath C. Rajapakse 

        Raj Acharya 
Bertil Schmidt 

Gwenn Volkert 
 

 



Organization 

IAPR Technical Committee (TC-20) on Pattern Recognition for 
Bioinformatics 

Raj Acharya (Vice-chair) Pennsylvania State University, USA 
Fransisco Azuaje University of Ulster, UK 
Vladimir Brusic University of Queensland, Australia 
Phoebe Chen Deakin University, Australia 
David Corne Heriot-Watt University, UK 
Elena Marchiori Vrije University of Amsterdam, The Netherlands 
Mariofanna Milanova University of Arkansas at Little Rock, USA 
Gary B. Fogel Natural Selection, Inc., USA 
Saman K. Halgamuge University of Melbourne, Australia 
Visakan Kadirkamanathan University of Sheffield, UK 
Nik Kasabov Auckland University of Technology, New Zealand 
Irwin King Chinese University of Hong Kong, Hong Kong 
Alex V. Kochetov Russian Academy of Sciences, Russia 
Graham Leedham  Nanyang Tech. University, Singapore 
Ajit Narayanan  University of Exeter, UK 
Marimuthu Palaniswami University of Melbourne, Australia 
Jagath C. Rajapakse (Chair) Nanyang Tech. University, Singapore 
Gwenn Volkert Kent State University, USA 
Roy E. Welsch Massachusetts Inst. of Technology, USA 
Kay C. Wiese Simon Fraser University, Canada 
Limsoon Wong  National University of Singapore, Singapore 
Jiahua (Jerry) Wu Wellcome Trust Sanger Inst., UK 
Yanqing Zhang Georgia State University, USA 
Qiang Yang Hong Kong University of Science and Technology, 

Hong Kong 

 

 



 

 

PRIB 2007 Organization 

General Chair 

Jagath C. Rajapakse (Co-chair) Nanyang Technological University, Singapore 

General Co-chair 

Raj Acharya Pennsylvania State University, USA 

Program Chairs 

Bertil Schmidt University of New South Wales Asia, Singapore 
Gwenn Volkert Kent State University, USA 

Special Session Chairs 

Shandar Ahmad National Institute of Biomedical Innovation, 
Japan 

Madhu Chetty Monash University, Australia 
Elena Marchiori Vrije University of Amsterdam, The Netherlands 

Publicity Chairs 

Saman K. Halgamuge University of Melbourne, Australia 
Roberto Tagliaferri Università Di Salerno, Italy 
Wei Wang Fudan University, China 
Yanqing Zhang Georgia State University, USA 

Publication Chairs 

Sy-Loi Ho Nanyang Technological University, Singapore 
Feng Lin Nanyang Technological University, Singapore 

Local Chair  

Graham Leedham  University of New South Wales Asia, Singapore 



XII PRIB 2007 Organization 

  

Local Organization Committee 

Byron Koon Kau Choi Nanyang Technological University, Singapore 
Yulan He Nanyang Technological University, Singapore 
Hwee Kuan Lee Bioinformatics Institute, Singapore 
Jinming Li Nanyang Technological University, Singapore 

Secretariat 

Norhana Binte Ahmad Nanyang Technological University, Singapore 

System Administration 

Linda Ang Ah Giat  Nanyang Technological University, Singapore 

Program Committee 

Tatsuya Akutsu Kyoto University, Japan 
Guillaume Bourque Genome Institute of Singapore, Singapore 
Timo Rolf Bretschneider Nanyang Technological University, Singapore 
Zehra Cataltepe Istanbul Technical University, Turkey 
Phoebe Chen Deakin University, Australia 
Francis Y.L. Chin University of Hong Kong, Hong Kong 
Peter Clote Boston College, USA 
David Corne Heriot-Watt University, UK 
Carlos Cotta University of Malaga, Spain 
Antoine Danchin Institut Pasteur, France 
Joaquín Dopazo Centro de Investigación Príncipe Felipe, Spain 
James G. Evans Massachusetts Institute of Technology, USA 
Alexandru Floares Oncological Institute Cluj-Napoca, Romania 
Mikhail S. Gelfand Institute for Information Transmission Problems, 

Russia 
Ilkka Havukkala Auckland University of Technology, New Zealand 
Jaap Heringa Vrije Universiteit, The Netherlands 
Lisa Holm University of Helsinki, Finland 
Ming-Jing Hwang Academia Sinica, Taiwan 
Visakan Kadirkamanathan University of Sheffield, UK 
Nikola Kasabov Auckland University of Technology, New Zealand 
Irwin King The Chinese University of Hong Kong, 

   Hong Kong 
  



 PRIB 2007 Organization XIII 

 

Alex V. Kochetov Russian Academy of Sciences, Russia 
Vladimir A. Kuznetsov Genome Institute of Singapore, Singapore 
Chee Keong Kwoh Nanyang Technological University, Singapore 
Wing-Ning Li University of Arkansas, USA 
Alan Wee-Chung Liew Chinese University of Hong Kong, Hong Kong 
Frederique Lisacek Swiss Institute of Bioinformatics, Switzerland 
Hiroshi Matsuno Yamaguchi University, Japan 
Martin Middendorf Universität Leipzig, Germany 
Mariofanna Milanova University of Arkansas at Little Rock, USA 
Aleksandar Milosavljevi Baylor College of Medicine, USA 
Satoru Miyano University of Tokyo, Japan 
Jason H. Moore Dartmouth Medical School, USA 
Parvin Mousavi Queen's University, Canada 
See-Kiong Ng Institute for Infocomm Research, Singapore 
Yanay Ofran Columbia University, USA 
Christos Ouzounis European Bioinformatics Institute, UK 
Zoran Obradovic Temple University, USA 
Nikhil R. Pal Indian Statistical Institute, India 
Laxmi Parida IBM T.J. Watson Research Center, USA 
Mihail Popescu University of Missouri, USA 
Predrag Radivojac Indiana University, USA 
Nikolaus Rajewsky Max Delbruck Center for Molecular Medicine, 

Germany 
Jem Rowland University of Wales Aberystwyth, UK 
Meena Kishore Sakharkar Nanyang Technological University, Singapore 
Akinori Sarai Kyushu Institute of Technology, Japan 
Alexander Schliep Max Planck Institute for Molecular Genetics, 

Germany 
Christian Schoenbach Nanyang Technological University, Singapore 
N.Srinivasan Indian Institute of Science, India 
P. N. Suganthan Nanyang Technological University, Singapore 
Wing Kin Sung National University of Singapore, Singapore 
Anna Tramontano University of Rome "La Sapienza", Italy 
Michael Wagner Cincinnati Children's Hospital Research 

Foundation, USA 
Haiying Wang University of Ulster at Jordanstown, UK 
Lusheng Wang City University of Hong Kong, Hong Kong 
Michael Q. Zhang Cold Spring Harbor Laboratory, USA  

 



XIV PRIB 2007 Organization 

  

Reviewers 

Konagaya Akihiko  RIKEN, Genomic Sciences Centre, Japan 
Mundra Piyushkumar Arjunlal Nanyang Technological University, 

Singapore 
Wendy Ashlock University of Guelph, Canada 
Sansanee Auephanwiriyakul  Chiangmai University, Thailand 
Jung-Hsien Chiang National Cheng Kung University, Taiwan 
Kai-Bo Duan Center for Drug Discovery, Singapore 
Julien Epps University of New South Wales Asia, 

Singapore 
Margaret J. Eppstein  University of Vermont, Canada 
Bruno Gaeta University of New South Wales, Australia 
Shinn-Ying Ho National Chiao Tung University, Taiwan 
Masoud Jamei Simcyp Limited, UK 
Vert Jean-Philippe Ecole des Mines de Paris, France 
Vinny Just Ohio University, USA 
Marta Kasprzak Poznan University of Technology, Poland 
Kyung Joong Kim Yonsei University, Korea 
Prasanna Ratnakar Kolatkar Genomic Institute of Singapore, Singapore 
Lukasz Kurgan University of Alberta, Canada 
Weiguo Liu Nanyang Technological University, Singapore 
Pasi Luukka Lappeenranta University of Technology, 

Finland 
Jianmin Ma Nanyang Technological University, Singapore 
Nawar Malhis University of British Columbia, Canada 
Bernard Moret  Ecole Polytechnique Federale de 

Lausanne, France 
Ngoc Minh Nguyen  Nanyang Technological University, Singapore 
Merja Oja  University of Helsinki, Finland 
Menaka Rajapakse Institute of Infocomm Research, Singapore 
Carmelina Ruggiero  University of Genoa, Italy 
Muhammad Shoaib B. Sehgal Monash University, Australia 
Scott Smith Boise State University, USA 
Yuchun Tang Georgia State University, USA 
Thanos Vasilakos University of Western Macedonia,Greece 
Chandra Verma Bioinformatics Institute, Singapore 
Tiffani Williams Texas A&M Engineering, USA 
Gwan-Su Yi Information and Communications University, 

Korea 
Rui Xu University of Missouri-Rolla, USA 
Runxuan Zhang Institut Pasteur, France 
Shuigeng Zhou Fudan University, China 

 

 



Table of Contents

Part I: Sequence Analysis

Automated Methods of Predicting the Function of Biological Sequences
Using GO and Rough Set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

Xu-Ning Tang, Zhi-Chao Lian, Zhi-Li Pei, and Yan-Chun Liang

C-Based Design Methodology for FPGA Implementation of ClustalW
MSA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

Yan Lin Aung, Douglas L. Maskell, Timothy F. Oliver,
Bertil Schmidt, and William Bong

A Two-Phase ANN Method for Genome-Wide Detection of Hormone
Response Elements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

Maria Stepanova, Feng Lin, and Valerie C.-L. Lin

An Expert Knowledge-Guided Mutation Operator for Genome-Wide
Genetic Analysis Using Genetic Programming . . . . . . . . . . . . . . . . . . . . . . . 30

Casey S. Greene, Bill C. White, and Jason H. Moore

cDNA-Derived Amino Acid Sequence from Rat Brain A2aR Possesses
Conserved Motifs PMNYM of TM 5 Domain, Which May Be Involved
in Dimerization of A2aR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

Pratibha Mehta Luthra, Sandeep Kumar Barodia,
Amresh Prakash, and Ramraghubir

Strong GC and AT Skew Correlation in Chicken Genome . . . . . . . . . . . . . 51
Xuegong Deng, Xuemei Deng, and Ilkka Havukkala

Comparative Analysis of a Hierarchical Bayesian Method for
Quantitative Trait Loci Analysis for the Arabidopsis Thaliana . . . . . . . . . 60

Caroline Pearson, Susan J. Simmons, Karl Ricanek Jr., and
Edward L. Boone

Part II: Prediction of Protein Structure, Interaction
and Localization

Using Decision Templates to Predict Subcellular Localization of
Protein . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

Jianyu Shi, Shaowu Zhang, Quan Pan, and Yanning Zhang

Generalized Schemata Theorem Incorporating Twin Removal for
Protein Structure Prediction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

Md Tamjidul Hoque, Madhu Chetty, and Laurence S. Dooley



XVI Table of Contents

Using Fuzzy Support Vector Machine Network to Predict Low
Homology Protein Structural Classes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

Tongliang Zhang, Rong Wei, and Yongsheng Ding

SVM-BetaPred: Prediction of Right-Handed ß-Helix Fold from Protein
Sequence Using SVM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

Siddharth Singh, Krishnan Hajela, and Ashwini Kumar Ramani

Protein Fold Recognition Based Upon the Amino Acid Occurrence . . . . . 120
Y.-h. Taguchi and M. Michael Gromiha

Using Efficient RBF Network to Identify Interface Residues Based on
PSSM Profiles and Biochemical Properties . . . . . . . . . . . . . . . . . . . . . . . . . . 132

Yu-Yen Ou, Shu-An Chen, Chung-Lu Shao, and Hao-Geng Hung

Dynamic Outlier Exclusion Training Algorithm for Sequence Based
Predictions in Proteins Using Neural Network . . . . . . . . . . . . . . . . . . . . . . . 142

Shandar Ahmad

Bioinformatics on β-Barrel Membrane Proteins: Sequence and
Structural Analysis, Discrimination and Prediction . . . . . . . . . . . . . . . . . . . 148

M. Michael Gromiha

Estimation of Evolutionary Average Hydrophobicity Profile from a
Family of Protein Sequences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158

Said Hassan Ahmed and Tor Fl̊a

Part III: Gene Expression Analysis

APMA Database for Affymetrix Target Sequences Mapping, Quality
Assessment and Expression Data Mining . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166

Yuriy Orlov, Jiangtao Zhou, Joanne Chen, Atif Shahab, and
Vladimir Kuznetsov

Ensemble of Dissimilarity Based Classifiers for Cancerous Samples
Classification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178
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Abstract. With the extraordinarily increase in genomic sequence data, there is a 
need to develop an effective and accurate method to deduce the biological 
functions of novel sequences with high accuracy. As the use of experiments to 
validate the function of biological sequence is too expensive and hardly to be 
applied to large-scale data, the use of computer for prediction of gene function 
has become an economical and effective substitute. This paper proposes a new 
design of BLAST-based GO term annotator which incorporates data mining 
techniques and utilizes rough set theory. Moreover, this method is an evolution 
against the traditional methods which only base on BLAST or characters of GO 
Terms. Finally, experimental results prove the validity of the proposed rough 
set-based method. 

Keywords: GO  BLAST  Rough Set Theory. 

1   Introduction 

Along with the development of modern sequencing technology, the number of gene 
sequence is increasing everyday. A report coming from GenBank, a major repository of 
genomic data, shows an exponential increase in sequence data, during the last decade. 
As a result, biologists have to waste amount of time in finding out some useful 
information within specific domain. Even worse, different biological database might 
use different nomenclatures, which like some dialects, making information search, 
especially for computer-based information search, unavailable. So, how to store and 
take advantage of the information has become many biologists’ common concern.  

1.1   Gene Ontology 

The emergence of Gene Ontology (GO) project has been used to solve the 
nomenclature problem. Gene Ontology project provides a set of unified, standard and 
hierarchical terms to note the functional characters of gene products [1]. People can use 
                                                           
* Corresponding author. 
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X U⊆
( )R ind K∈

nomenclature provided by GO project to annotate the biological functions of biological 
sequences. 

Each item in GO database is composed with three key parts: gene product ID, GO 
terms and evidence code. Among them, gene product ID uniquely identifies the 
sequence of a gene product. Moreover, as sequence data alone is of limited use to 
biologists, GO project annotates the functions of gene products from three points of 
view. They are biological process, cellular component and molecular function. At last, 
evidence code indicates how annotation to a particular term is supported.  

Essentially, each of these three types of terms can be separated into more detailed 
sub-categories, so that those terms construct a DAG (directed acyclic hierarchical 
graph), shown in Figure 1. Generally speaking, GO is a unified biological tool which 
can annotate gene product’s function with a set of dynamic controlled vocabulary and it 
can keep on upgrading with the development of biology. 

 

Fig. 1. Directed acyclic hierarchical graph of GO term   

1.2   Basic Theory About Rough Set 

Rough set has been introduced as a mathematical tool for dealing with fuzzy and 
uncertain knowledge in artificial intelligence application.  

For convenience, we will introduce some basic concepts of rough set at first [2]. 

Definition 1. Given a knowledge system K= (U, R), for each subset        

and an equivalence relation   , define two subsets: 

Lower approximation: { / | }RX Y U R Y X= ∈ ⊆U  

Upper approximation: { / | }RX Y U R Y X= ∈ ∩ ≠ ∅U  

Any subset defined by its lower and upper approximation is called a rough set. 
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Definition 2. Positive region: Let P and Q be equivalence relations within U, 

( )Ppos Q is called the P-positive region of Q, such that . 

Definition 3. Let , , ,DT U C D V f=< ∪ > be a Decision table, where C and D 

stand for conditional and decision attributes subsets, C D∩ = ∅ , U is a non-empty, 

finite set called universe, V is called the value set, f stand for information function. 

Definition 4. Let X C∅ ⊆ ⊆ , Y D∅ ⊆ ⊆ , / { }U Y U≠ , given x X∈ ,  

define significance of x with X (comparing with Y): 

{ } { }( ) (| ( ) | | ( ) |) / | |Y
X x X X xsig x S Y S Y U− −= − . 

2   Relative Work and Background 

Although the emergence of GO project has been used to solve the problem of 
unification of nomenclature successfully, there is another remarkable problem about 
how to apply these nomenclatures on large-scale data effectively.  

At present, a number of automated BLAST-based GO term prediction applications 
have been published. BLAST is the most widely used sequence alignment tool [3, 4]. It 
permits the user to find similar sequence according to high degrees of local similarity. 
Normally, it is very likely that similar sequences might be homological; therefore, the 
similar sequences may have the same or similar functions. For these reasons BLAST has 
been employed to assign GO terms to a novel sequence. Nowadays, there are several 
methods with the idea of predicting the function of gene product using BLAST and GO, 
such as TOP BLAST, GOtach, GOFigue, Goblet and some others [5-10]. These 
approaches can be roughly divided into several main kinds: graph-based, discriminant 
function-based and term distance concordance-based and so on. Among them the TOP 
BLAST is the most commonly used approach. However, TOP BLAST is not so accurate 
and convincing. As a result, this paper recommends a new design of BLAST-based GO 
term annotator which incorporates data mining techniques and utilizes rough set theory. 
Under the strict criterion, the new approach provides higher quality and more accurate 
functional prediction for a novel sequences than TOP BLAST can. 

3   Rough Set-Based Method 

3.1   Data Collection 

The Gene Ontology data were downloaded and divided into three parts: training set, 
test set and BLAST-able database. This data consist of protein sequence data and their 
GO term associations. UniPort annotations, proteins and their GO term associations are 
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submitted by UniPort, is referred to as BLAST-able database. This data, consisting of 
107,632 proteins, have high quality annotation. Non UniPort annotations, consisting of 
3,537 proteins and their GO term associations are submitted by other sources, are 
referred to as training set and test set. In order to examine our method’s validity, we 
employ cross-validation method. Each time we randomly select 1,200 proteins as test 
set and the other 2,337 proteins as training set. 

Evidence code indicates how annotation to a particular term is supported. Some are 
supported by experiments, some are supported by literature and some are supported by 
computation method. According to different evidence codes, for training set and test set 
respectively we constructed 2 different experimental sets: one experimental set, called 
7-evidence set, includes GO terms supporting by evidence codes such as: TAS, IDA, 
IC, IMP, IGI, IPI and IEP. Another experimental set, called NoIEA set, includes GO 
terms supporting by all evidence codes except IEA. For the reason that all GO terms 
within 7-evidence set are supported by evidence code which have high reliability, 
meanwhile the GO terms within NoIEA set just preclude those supported by evidence 
code of IEA, there is no doubt that GO terms in 7-evidenc are more reliable and 
accurate than those in NoIEA. 

3.2   Accuracy Metrics 

As we employ the strict evaluation method, precision and recall rate are defined as: 

Precision: 
p

c
P =  

Where c is the number of correct predicted term assignments and p is the total number 

of predicted assignments. 

Recall rate: 
t

c
R =  

Where c is the number of correct predicted term assignments and t is the total number of 

correct term. 

Harmonic Mean: 
RP

H
11

2

+
=  

Only if the predicted term is the right term which the source sequence indeed has, we 
count it as a correct prediction. Otherwise, prediction hit on either its parent term or its 
children term is considered as a false prediction.  

3.3   Preparation 

Before deducing rules from decision table, there are some preparation works to do.  

3.3.1   Basic Concept 
(1) Source sequence: we define those protein sequences which need prediction of 
function in training set as source sequence. 
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(2) Target sequence: we define those protein sequences returned by BLAST from 
BLAST-able database as target sequences which are similar to the source sequence. 
(3) Unit: For each source sequence in training set, we returned 5 most similar sequences 
(in sort of ascending E-value) by BLAST from BLAST-able database. And these 5 
most similar sequences construct a unit. 
(4) Each GO term of those sequences belonging to the unit has 5 attributes described 
below: GO ID (which can uniquely identify the GO term), Rank (the ascending rank 
value of the highest matching result the term is found in), Times (the number of 
annotations using the term), E-value (a parameter returned by BLAST and stand for the 
similarity between source sequence and target sequence, the smaller the similar), and 
Score (another parameter returned by BLAST similar to E-value). 

3.3.2   Calculate the Probability of Different Values of Each Attribute Within All 
Units 

(1) For each source sequence in training set, we return a unit by BLAST and calculate 
those 5 attributes of the unit. 

(2) For all units obtained, we calculate the probability of different values for each 
attribute in these units (P(Times=X) X=1,2,3,4,5; P(Rank=X) X=1,2,3,4,5; 
P(Score=X) X>0; P(E-Value=X) 0<X<1). 

3.3.3   Calculate the Conditional Probability  
When source sequence indeed has this GO term (K=1), calculate the conditional 
probability of 4 of these attributes: P(Times=X|K=1); P(Rank=X|K=1); 
P(Score=X|K=1); P(E-Value=X|K=1)). 

For the reason that a particular GO term may occur in many different units, and those 
4 attributes (excluding GO ID) of this GO term may have different values when they 
appear in different units, so it’s very likely that we can judge whether the source 
sequence has this GO term by those 4 attributes’ value. This preparation step will help 
us to make a discretization of rough set later.  

3.4   Algorithm 

Because of the difference among GO terms, it is very likely that we can predict whether 
the sequence has a particular GO term or not by checking those 4 attributes of the GO 
term within the unit. As a result, we treat all units as a whole set and generate a set of 
rules for each GO term in this set. With these rules, we can predict the terms of a 
sequence within the unit.  

For each GO term, once it has occurred in at least one unit, we will deduce a set of 
rules about it by decision table. For example, GO: 000019 has emerged in 7 different 
units of training set, so we construct a raw decision table based on this GO term’s 
situation, as shown in Table 1. After that, according to those conditional probabilities 
obtained from preparation step, we make discretization of the raw decision table and 
get the discrete decision table, as shown in Table 2.  
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Table 1. Raw decision table of GO: 000019, GO NO identify the GO term which needs 
deduction rules; Sequence stands for the unit which contains this GO term and is returned by 
BLAST according to a source sequence; K=1 means that the source sequence indeed contains 
this GO term 

GO NO Sequence Rank Times E-Values Score K 
GO:0000119 DDB|DDB019126 5 1 1.00E-82 305 0 
GO:0000119 DDB|DDB021490 1 2 2.00E-11 72 0 
GO:0000119 SGD|S000000397 5 1 4.00E-15 80 1 
GO:0000119 SGD|S000001100 3 1 9.00E-22 102 1 
GO:0000119 SGD|S000002382 5 3 8.00E-09 62 0 
GO:0000119 SGD|S000002716 5 1 1.00E-10 64 1 
GO:0000119 SGD|S000003095 1 1 2.00E-12 69 0 

Table 2. Discrete Decision Table of GO: 000019, According to the result of preparation step, we 
divide: Times=4 or 5 as high times, Times=2 or 3 as mid times, Times=1 as low times; Rank=1 as 
high rank, Rank=2 or 3 as mid rank, Rank=4 or 5 as low rank; E-Value>1.00E-30 as high e-value, 
E-Value<1.E-100 as low e-value, others as mid e-value; Score<200 as low score, Score>800 as 
high score, others as mid score 

 

 

Fig. 2. Rules Deducing From Decision Table 
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At last, we run our program on the discrete decision table and obtain a set of rules, as 
shown in Figure 2. After that, we can understand which attribute or which combination 
of attributes can be used to decide whether the source sequence has the GO term or not. 

Here is the specific algorithm of knowledge discovery based on the decision table: 
let decision table DT, where it contains n samples (a total of 11 rows), j conditional 
attributes (|C|=j), and one decision attribute (|D|=1). At first we calculate the 
significance for every single conditional attribute and describe rules of it. For each 
important conditional attribute, if there is decision attribute fully rely on this 
conditional attribute, the algorithm is over. Or else, we pick out the most important 
attribute (having the highest significance) among those important attributes. And then 
based on this most important attribute, we check each combination of two conditional 
attributes, with the purpose of finding out all important combinations of two 
conditional attributes and describing its rules. The step continues until all important 
knowledge is discovered. 

Step1. //Algorithm first calculates significance of every single conditional attribute.  

       Let 'C = ∅  

For i=1 to j    

           ' ' { }iC C c= ∪     

           Compute 
' ( )

C
pos D  

           IF( ( )D
is ig c∅
>0)  

              Output rules 

   Let m=1 and FLAG=1 

           ' ' { }iC C c= −  

END FOR 

IF(
' ( )

C
p o s D U∃ = ) 

           Algorithm Finish 

        ELSE 

Find max( ( )D
isig c∅
) and then let 

1 iJ c=  

' '
1{ }C C J= ∪  
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Step2. //each time we add one conditional attribute to the combination and calculate its 

significance.  

        WHILE (FLAG) 

           m=m+1       

           For i=1 to j ( '
ic C∉ ) 

              ' ' { }iC C c= −  

              Compute 
' ( )

C
p o s D  

              IF(
' { }

( )
i

D
iC c

s i g c
−

>0) 

                 Output rules 

                 Let FLAG=1 

              ' ' { }iC C c= −  

END FOR 

IF( ' ( )
C

pos D U∃ = ) 

                 Algorithm Finish 

              ELSE 

Find max(
' { }

( )
i

D
iC c

sig c
−

) and then let m iJ c=  

' ' { }mC C J= ∪  

END WHILE 

For each sequence in the test set, we also use BLAST to return 5 most similar 
sequences from BLAST-able database as a unit. And then we calculate the statistic 
result of those 4 attributes for each GO term contained in the unit. With those rules 
obtained from the training set, we can judge whether the source sequence contains the 
GO term. 
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4   Simulation Results and Analysis 

The proposed method is examined by applying it on 7-evidence and NoIEA dataset. 
Moreover, it is compared with Top BLAST, as shown in Table 3: 

Table 3. Comparison Between Top BLAST and Rough Set 

Method Precision Recall Harmonic Mean 
 7-evdience NoIEA 7-evdience NoIEA 7-evdience NoIEA 

Top BLAST 0.21 0.40 0.15 0.33 0.175 0.362 

Rough Set 0.56 0.68 0.10 0.21 0.170 0.321 

1. Either on 7-evidence dataset or on NoIEA dataset, the rough set-based method 
significantly improves the accuracy for the prediction of gene product. Especially, 
when it comes to 7-evidence dataset, the improvement could range from 21% to 
56%, which is more obvious. It is almost 167% increase than before. Also, on 
NoIEA dataset our method improves the accuracy for prediction of gene product 
from 40% to 68%. It is nearly 70% increase than before. The main reason that the 
Rough Set-based method performs better on NoIEA dataset than on 7-evidence 
dataset is that the NoIEA dataset contains GO terms coming from both electronic 
annotation and curator-assigned. Those electronic annotations rely highly on 
sequences returned by BLAST, which is completely based on the similarity 
between sequences. As you known, our method also highly relies on those 
sequences returned by BLAST. As a result, precision will be greatly improved 
within NoIEA dataset. Similarly, within NoIEA dataset, GO terms which have 
evidence code such as ISS are also based on similarity. So that when there are 
evidence codes such as ISS, RCA in dataset, the result will be better. By looking 
through the results of TOP BLAST, we can also find the same situation.  

2. On the contrary, Rough Set-based method is correspondingly lower than TOP 
BLAST in recall rate. It means that although most of its prediction is correct, 
Rough Set-based method covers only a small part of correct GO term. 

3. At last, we know that Rough Set-based method and TOP BLAST have the similar 
performance by comparing the harmonic mean.  

5   Conclusions 

It is demonstrated that the rough set theory has great potential in bioinformatics, 
especially in the predicting functions of gene products. This paper proposes a 
data-mining-oriented method using rough set theory and applies it to prediction of gene 
function. Experimental results show that rough set-based method is able to provide 
high quality, conservative functional prediction for novel sequences. The proposed 
method can be used to improve the accuracy significantly by comparing with TOP 
BLAST. This method not only enables the electronic annotation to be more reliable but 
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also decreases the cost for functional prediction of novel sequences, which makes it an 
effective supplement of experimental method. However, we should not ignore the 
shortcoming of the rough set-based method, especially for the low recall rate. There are 
many reasons for the low recall rate: on one hand, test set contain plenty of situations 
never appear in the training set. On the other hand, our rules returned from the training 
set are too conservative to ensure the sensitive. In addition, according to the experiment 
we find that how to discretize the rough set is another key to improve the rough 
set-based method.  
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Abstract. Systolisation of the pairwise distance computation algorithm
and mapping into field programmable gate arrays (FPGA) have proven
to give superior performance at a lower cost, compared to the same algo-
rithm running on a cluster of workstations. The primary design method-
ology for this approach is based on the hardware description languages
such as VHDL and Verilog HDL. An alternative design methodology,
however, is the use of a high level language such as C to describe the
algorithms and generate equivalent hardware descriptions for implemen-
tation in FPGA so as to reduce time to market. This paper describes the
design and implementation of the ClustalW first stage multiple sequence
alignment based on the Smith-Waterman algorithm on a low cost FPGA
development platform using a C language development tool suite. Per-
formance evaluation results show that comparable performance could be
achieved to that of Pentium 4 systems and other HDL-based solutions
using even the smallest commercially available FPGA device with this
design methodology.

Keywords: multiple sequence alignment, ClustalW, FPGA, sequence
analysis.

1 Introduction

Multiple sequence alignment (MSA) is a generalized pairwise sequence alignment
to include more than two sequences of protein or nucleic acid. The main purpose
of MSA is to infer homology between sequences. But there are many other appli-
cations: finding diagnostic patterns, characterization of protein families, detec-
tion of similarity between new sequences and well-known families of sequences,
and evolutionary analysis. As the time and space complexities for MSA are in
the order of the product of the lengths of the sequences, many heuristic align-
ment methods have been developed. Among them, the progressive alignment
method is a widely used heuristic. One popular MSA program, ClustalW, makes
use of such a method and consists of three stages: distance matrix, guided tree

J.C. Rajapakse, B. Schmidt, and G. Volkert (Eds.): PRIB 2007, LNBI 4774, pp. 11–18, 2007.
c© Springer-Verlag Berlin Heidelberg 2007
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and progressive alignment along the tree. The first stage computes and tabu-
lates the distance value between every pair of sequences using pairwise sequence
alignment. Then, a phylogenetic or guided tree is constructed using the distance
matrix obtained in the first stage. Finally, sequences are progressively aligned
according to the order specified by the guided tree to produce the final MSA. Un-
fortunately, the progressive alignment method still requires long periods of time
to compute the MSA. Profiling of the ClustalW program on a single processor
showed that almost 96% of the time is spent in the first stage [1].

1.1 Motivation
Many parallel processing approaches have been proposed and developed to speed-
up the time consuming MSA first stage. Ebedes et al. have implemented paral-
lel version of the MSA first stage on a small cluster of six workstations using the
Message Passing Interface and reported that linear speed-up and almost 100% ef-
ficiency could be achieved [1].

Alternatively, it is also possible and very promising to map the MSA first stage
into FPGA since the underlying architecture of the FPGA is well-suited for par-
allel processing. This approach is concerned with the systolisation of a pairwise
distance computation algorithm and mapping it into FPGA, and it has proven
to give superior performance at lower cost compared to the same algorithm run-
ning on a cluster of workstations [2], [3], [4]. The dominant design methodology
for this approach has been based on hardware description languages (HDL), such
as VHDL and Verilog HDL.

On the other hand, the capacity of FPGAs, like other semiconductor chips, in-
creases in accordance with Moore’s law as do the design complexities for these
chips. The support provided by electronic design automation software tool ven-
dors to cope with the increasing design complexity is lagging behind Moore’s law,
with conventional HDL-based designs often becoming bottlenecks in the design
cycle. This has created a productivity gap between design complexity and design
capacity [5]. A number of extensions to existing HDLs and software tools based on
high level languages have emerged in an attempt to bridge this productivity gap.
One such tool is CoDeveloper from Impulse Accelerated Technologies. CoDevel-
oper is a C language development tool suite for FPGAs which allows designers to
use standard ANSI C to express highly parallel applications and algorithms.

With the above as the basis for our motivation, we have designed and im-
plemented the ClustalW first stage multiple sequence alignment based on the
Smith-Waterman algorithm on a low cost FPGA development platform using the
C language development tool suite. We explain the pairwise sequence distance
computation of the ClustalW MSA in detail and describe the recurrence equa-
tions, which were used to efficiently map the algorithm into FPGA hardware, in
the next section.

2 ClustalW MSA First Stage: Distance Matrix

The ClustalW program makes use of the following definition to compute the
distance between two sequences.
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Definition 1. Given a set of n sequences S = S1, . . . , Sn. For two sequences
Si, Sj ∈ S, pairwise sequence distance d(Si, Sj) is defined as follows:

d(Si, Sj) = 1 − nid(Si, Sj)
min {li, lj} (1)

where nid(Si, Sj) denotes the number of exact matches in the optimal local align-
ment of Si and Sj (with respect to the given scoring system, i.e the substitution
matrix sbt and gap penalty parameters α, β for affine gap penalties or just α for
linear gap penalties) and li (lj) denotes the length of Si(Sj).

The Smith-Waterman algorithm can be used to compute the optimal local align-
ment of two sequences [6]. The algorithm compares two sequences by computing
a distance that represents the minimal cost of transforming one segment into an-
other using two elementary operations: match/mutation and insertion/deletion
(also called a gap penalty). For two sequences, S1 and S2 with length l1 and
l2, the Smith-Waterman algorithm computes the similarity HA(i, j) of two se-
quences ending at position i and j in order to identify common subsequences.
The computation of HA(i, j), for 1 ≤ i ≤ l1, 1 ≤ j ≤ l2, is given by the following
recurrences:

HA(i, j) = max{0, E(i, j), F (i, j), HA(i − 1, j − 1) + sbt(S1[i], S2[j])} (2)
E(i, j) = max{HA(i, j − 1) − α, E(i, j − 1) − β} (3)
F (i, j) = max{HA(i − 1, j) − α, F (i − 1, j) − β} (4)

where sbt refers to the character substitution table. Initial values are: HA(i, 0) =
E(i, 0) = HA(0, j) = F (0, j) = 0 for 0 ≤ i ≤ l1, 0 ≤ j ≤ l2. Multiple gap costs
are taken into account as follows: α is the cost of the first gap; β is the cost of
the following gaps. This type of gap cost is known as affine gap penalty. Some
applications also use a linear gap penalty, i.e. α = β. For linear gap penalties
the above recurrence relations can be simplified to:

HL(i, j) = max{0, HL(i, j − 1) − α, HL(i − 1, j) − α, HL(i − 1, j − 1)
+sbt(S1[i], S2[j])} . (5)

Each position of the matrix HA (HL) is the similarity value. The two segments
of S1 and S2 producing this value can be determined by a traceback procedure.
The value nid(S1, S2) of the two sequences can then be computed by counting
the number of exact character matches during the traceback procedure of the
Smith-Waterman algorithm. Unfortunately, this procedure is not suitable for
hardware implementation. Hence, we present a new recurrence relation for the
nid-value computation [7] that is suitable for hardware implementation in this
section. We first explain the idea for the linear gap penalty and then generalize
it for affine gap penalties.

Definition 2. Given two sequences S1 and S2 with length l1 and l2, linear gap
penalty α and a substitution table sbt, the matrix NL(i, j) (1 ≤ i ≤ l1, 1 ≤ j ≤ l2)
is recursively defined as follows:
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NL(i, j) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0 if HL(i, j) = 0
NL(i − 1, j − 1) + m(i, j) if HL(i, j) = HL(i − 1, j − 1)

+sbt(S1[i], S2[j])
NL(i, j − 1) if HL(i, j) = H(i, j − 1) − α
NL(i − 1, j) if HL(i, j) = H(i − 1, j) − α

(6)

where

m(i, j) =
{

1 if S1[i] = S2[j]
0 otherwise .

Theorem 1. For the local alignment of two sequences S1 and S2 with linear gap
penalty α and substitution matrix sbt,

nid(S1, S2) = NL(imax, jmax)

where (imax, jmax) denotes the coordinates of the maximum value in the corre-
sponding matrix HL.

Proof. Consider the optimal alignment of all pairs of suffixes of the first i charac-
ters of S1(S1[1 . . . i]) and the first j characters of S2(S2[1 . . . j]). This alignment
is called the optimal i, j suffix alignment (of S1 and S2). It can be found by
computing a traceback in the matrix HL starting from cell (i, j). We now show
that for a given pair of indices i, j (1 ≤ i ≤ l1, 1 ≤ j ≤ l2), NL(i, j) is equal to
the number of exact matches in optimal i, j suffix alignment. The claim then
follows from the fact that the optimal imax, jmax suffix alignment is equal to the
optimal local alignment.

Case 1: HL(i, j) = 0. The corresponding alignment is empty and NL(i, j) = 0.
Case 2: HL(i, j) = HL(i− 1, j − 1)+ sbt(S1[i], S2[j]). The alignment ends with

S1[i] aligned to S2[j], which contributes m(S1[i], S2[j]) to the number of
exact matches. The remaining number is then equal to the number of exact
matches found in the optimal i−1, j−1 suffix alignment. Hence, NL(i, j) =
NL(i − 1, j − 1) + m(S1[i], S2[j]).

Case 3: HL(i, j) = HL(i − 1, j) − α. The alignment ends with S1[i] aligned
to a gap, which contributes zero exact matches. The remaining number is
equal to the number found in the optimal i − 1, j suffix alignment. Hence,
NL(i, j) = NL(i − 1, j).

Case 4: HL(i, j) = HL(i, j − 1) − α. Similar to Case 3 follows NL(i, j) =
NL(i, j − 1).

Because HL(i, j) must be equal to one of these four cases, the Theorem is proven.
��

For affine gap penalties our method is extended as follows.

Definition 3. Given two sequences S1 and S2, affine gap penalties α, β, and
substitution table sbt, matrix NA(i, j)(1 ≤ i ≤ l1, 1 ≤ j ≤ l2) is recursively
defined as follows:



C-Based Design Methodology for FPGA Implementation of ClustalW MSA 15

NA(i, j) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0 if HA(i, j) = 0
NA(i − 1, j − 1) + m(i, j) if HA(i, j) = HA(i − 1, j − 1)

+sbt(S1[i], S2[j])
NE(i, j) if HA(i, j) = E(i, j)
NF (i, j) if HA(i, j) = F (i, j)

(7)

where

m(i, j) =
{

1 if S1[i] = S2[j]
0 otherwise

NE(i, j) =

⎧⎨
⎩

0 if j = 1
NA(i, j − 1) if E(i, j) = HA(i, j − 1) − α
NE(i, j − 1) if E(i, j) = E(i, j − 1) − β

NF (i, j) =

⎧⎨
⎩

0 if i = 1
NA(i − 1, j) if F (i, j) = HA(i − 1, j) − α
NF (i − 1, j) if F (i, j) = F (i − 1, j) − β .

Theorem 2. For the local alignment of the sequences S1 and S2, affine gap
penalty α, β and substitution matrix sbt,

nid(S1, S2) = NA(imax, jmax)

where (imax, jmax) denotes the coordinates of the maximum value in the corre-
sponding matrix HA.

Proof. Similar to the proof of Theorem 1 we show that for a given pair of indices
i, j (1 ≤ i ≤ l1, 1 ≤ j ≤ l2), NA(i, j) is equal to the number of exact matches in
optimal i, j suffix alignment.

Case 1: HA(i, j) = 0. The corresponding alignment is empty and NA(i, j) = 0.
Case 2: HA(i, j) = HA(i − 1, j − 1) + sbt(S1[i], S2[j]). Similar to Case 2 in the

previous proof follows NA(i, j) = NA(i − 1, j − 1) + m(S1[i], S2[j]).
Case 3: HA(i, j) = F (i, j). The alignment ends with S1[i] aligned to a gap,

which contributes zero exact matches. The remaining number is equal to
the number found in the optimal i − 1, j suffix alignment. Depending on
whether this alignment ends with a gap this number is either NA(i− 1, j) or
NF (i − 1, j). Hence, NA(i, j) = NF (i, j).

Case 4 HA(i, j) = E(i, j). Similar to Case 3 follows NA(i, j) = NE(i, j).

Because HA(i, j) must be equal to one of these four cases, Theorem 2 is proven.
��

3 Design and Implementation

We first implemented the recurrence equations in C, and ascertained that it
produced equivalent results to the original ClustalW pairwise alignment stage.
Hardware/software partitioning of the algorithm was carried out subsequently



16 Y.L. Aung et al.

using the CoDeveloper tool suite. Equivalent hardware descriptions were gener-
ated from the hardware portion of the C program for implementation in FPGA.
We decided to create a compact microprocessor system built around the MicroB-
laze soft processor from Xilinx in order to test and measure the performance of
the generated design in contrast to conventional design verification techniques
such as functional and timing simulation of the design. The high performance
fast simplex link (FSL) of the processor system is used to connect the processor
system and the MSA hardware processing element (PE).

In such a system, sequences, substitution matrix and gap penalties are stored
in the processor system memory. They are then sent out to the hardware and
pairwise alignment scores are read back from the hardware via the FSLs. We
have targeted the system to the Xilinx ML403 development platform, which
consists of a Virtex-4 FX12 FPGA. Our hardware PE can handle sequences with
maximum length of 550 and supports both linear and affine gap penalties. Once
the functionality of the design has been verified in hardware, design optimization
techniques are employed to achieve high performance. In CoDeveloper, designers
can implicitly or explicitly create the C code in such a way that the optimizer is
able to detect the parallelism and generate highly parallel hardware. We mainly
use the pipelining optimization technique in CoDeveloper to boost the design
performance.

An initial optimized implementation of the system with a single MSA PE,
which utilizes just 21% of the available hardware resources (slices), is able to
achieve ∼ 16MCUPS. As we can increase the device utilization by instantiating
additional MSA PEs conveniently with CoDeveloper, we added two additional
MSA PEs into the system. Figure 1 shows the system with three MSA PEs, which
are connected to the processor via FSLs. The whole system now utilizes 99% of
the available resources in which three MSA PEs contribute 62%. Performance
evaluation of this system along with comparisons to a Pentium 4 system and
other HDL-based solutions is provided in the next section.

4 Performance Evaluation

The above-mentioned system with three MSA PEs achieves a throughput of
∼ 36MCUPS. Comparing this performance with that of a Pentium 4 2GHz
system, it is 2.4x faster. The FPGA on the ML403 platform is the smallest
Virtex-4 FX family FPGA [8]. For larger FPGA devices such as Xilinx Virtex-4
LX80 and Virtex-II XC2V6000 FPGAs, 21 and 18 MSA PEs can be implemented
into these devices respectively. Estimating 90% efficiency for MSA hardware, 302
and 259MCUPS throughput can be expected. This performance is 20x and 17x
faster than that of Pentium 4 2 GHz system.

Compared to the nearest FPGA-based Verilog HDL implementation, which
makes use of XC2V6000 FPGA [9], our implementation is 3.9x slower since the
implementation of [9] achieves a sustained performance of ∼ 1GCUPS in the
Smith-Waterman dynamic programming matrix. Although our implementation
is also slower than other FPGA-based implementations using VHDL [10], [3],
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these designs only implement edit distance, which is of theoretical interest but
not used in practice [2] since it does not allow for different gap penalties and
substitution tables. This is not the case for our implementation. Figure 2 shows
the performance comparison of various systems discussed previously.

Fig. 1. MicroBlaze Processor System with Three MSA PEs

Fig. 2. ClustalW First Stage MSA Performance of Various Systems

5 Conclusion

Mapping of the first stage MSA algorithm into FPGA is solely based on the
standard ANSI C language and application programming interfaces supported
by the CoDeveloper tool. Neither HDL design nor simulation is done in this
relatively new design methodology yet comparable high performance design can
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be achieved with a significant reduction in the design time. Previous FPGA-
based hardware accelerators [3], [9] have been based on large and power-hungry
FPGA devices. We have demonstrated that a significant performance improve-
ment is possible using even the smallest commercially available FPGA device,
opening up possibilities for using these devices as on-demand accelerators for
compute-intensive applications on mobile and power constrained devices.

Acknowledgments. We would like to thank Mr. David Pellerin from Impulse
Accelerated Technologies for his effort in helping us to improve the MSA hard-
ware design performance.
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Abstract. Steroid hormone receptors compose a subgroup of regulatory
proteins which tend to recognize partially symmetric response elements
on DNA. Identification of the members of a gene regulatory machine
conducted by steroid hormones could provide better understanding of
nature and development of diseases. We present an approach based on
a succession of neural networks, which can be used for highly specific
detection of binding signals. It exploits the capability of a feed-forward
neural network to model datasets with high confidence, while a recurrent
network grants putative response elements with biologically meaningful
structures. We have used a novel method to train such a two-phase ar-
tificial neural network with a set of experimentally validated response
elements for steroid hormone receptors. We have demonstrated that
sequence-based prediction followed by structure-based classification of
putative binding sites allows to eliminate large amount of false positives.
An implementation of the neural network with Field-Programmable Gate
Array is also briefly described.

1 Introduction

The super-family of steroid and thyroid hormone receptor proteins includes
receptors for steroid hormones, thyroid hormones, vitamin D and vitamin A
(retinoic acid) [1]. Steroid hormones are involved in vital physiological processes,
ranging from establishment and maintenance of pregnancy [2] to regulation in
the genesis, progression and treatment of different cancers [3]. Activated by their
hormone molecules, steroid hormone receptors usually bind to their target DNA
– hormone response elements (HREs) – as partially symmetric homodimers [4].
HRE sequence, however, allows for a certain amount of flexibility in its nu-
cleotide composition. Thus, recognition of these binding sites on DNA is one of
the significant research topics in computational biology.

A comprehensive review on recognition of different strategies for transcription
factor binding sites (TFBS) is given by Wasserman and Sandelin [5]. The most
popular public resource is the P-Match tool based on a database of Position
Weight Matrices (PWMs) for eukaryotic transcription factors, TRANSFAC [6];
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and another open access is the database of TFBS profiles, JASPAR [7]. Unfor-
tunately, due to high diversity of the eukaryotic transcription factor families,
PWM-based representation of general TFBS patterns has been proved not very
effective [8,9]; the poor quality of datasets for particular TFs of interest in these
databases is another concern. For certain vertebrate transcription factors, how-
ever, weight matrix approach used as a part of a complex prediction system
may perform well, as demonstrated by Bajic et al. for estrogen response ele-
ment [10]. Research has also been done for more accurate recognition of HREs
or HRE-like patterns. The best result to date is implemented Hidden Markov
Model (HMM) for recognition of nuclear receptor binding sites on DNA [11].
However, the reported results suffer from a dataset which included all nuclear re-
ceptors together. Another promising idea, which involves Gibbs sampling model
for partially symmetric structures, was reported by Favorov et al. [12], but only
preliminary results for bacterial motifs have been reported.

In this paper, we present an artificial neural network (ANN) based approach
for prediction of hormone receptor binding sites on DNA. The main idea of this
approach is to predict a HRE-like DNA sequence first, and then estimate its
probability of being a dimeric hormone response element based on its half-site
structure. For this purpose, a two-phase neural network has been developed. A
feed-forward neural network returns a list of potential HREs, followed by a recur-
rent neural classifier which predicts a possible dimeric structure for each of them.
We found this approach very promising for HRE prediction in practice, with high
sensitivity and reliable specificity. Furthermore, we analyzed the efficiency and
cost of implementation of such a neural network. The expensive training process
is eased via use of hardware acceleration, thanks to the outstanding performance
of Field-Programmable Gate Arrays (FPGA).

2 Methods

The entire system for HRE recognition has been implemented in a form of two-
phase sequence analysis. The first phase is the sequence-based prediction of
putative hormone response elements. It is performed by a feed-forward neu-
ral network, and used for selection of HRE-like sequences on the entire DNA
sequence of interest. The output of this module is a list of sequences with pos-
terior probability of being functional hormone response element higher than a
predefined threshold. This network is trained with use of a set of experimentally
verified HREs by an adapted back-propagation method. The second phase is the
structure-based validation. It is performed by a recurrent neural network, and
corresponds to an attempt to classify a putative HRE (predicted at the previous
stage) into one of groups each representing a dimeric response element struc-
ture – direct, inverted or palindromic repeat. The rationale behind that comes
from experimental observations of dimeric protein-DNA iterations: a sequence
is unlikely involved in homodimeric DNA-protein binding even if it is marked
as a HRE-like in case if it cannot be reliably assigned with any known HRE
structure.
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2.1 Data Preparation

One can easily achieve very high sensitivity and specificity in identification of
HRE with just a few sequences, but that result would be unreliable. A sufficient
and accurate representative dataset is essential for the model to be trustable. In
our study, the HRE data was collected from more than 200 literature sources
and our in-house wet-lab experiments. Such a collection of HREs has no analogs
in the current public and commercial databases of TFBS profiles.

In the dataset, while a few of the regulatory elements are derived from genes
of fish and birds, most of the sites are mammalian and 90% of all sites are from
human or rodent genomic DNA. The collection contains response elements for
androgen (218 AREs), progesterone (66 PREs) and glucocorticoid (377 GREs)
hormone receptors, which have been reported to share the same DNA sequence
[13]. This observation has also been confirmed with use of our dataset [9]. Thus,
in our current work, we use the joint unit consisting of all the three hormone
receptors of interest unless stated otherwise.

2.2 Modeling of HREs with a Feed-Forward Neural Network

For sequence-based modeling of hormone response elements on DNA, a feed-
forward neural network (FFNN) has been developed. It obtains the preprocessed
(with use of one-hot notations for nucleotides) DNA sequence from an encrypting
module, and returns the two posterior probabilities, each corresponding to either
HRE-like or non-HRE sequence. Final output of the network – whether the
sequence is a HRE – is subject to adjustment by a threshold. Training of the
network is performed with use of experimentally validated HRE sequences for
positive patterns, and neutral DNA sequences for negative ones.

From the output of the preprocessing module, the 15bp-long DNA sequence
is converted to a 60-vector. The neural network theory [14] suggests that for a
reliable learning result, the number of degrees of freedom, i.e. weights to be fitted,
must be at most half of the number of constrains (the inputs accompanied be
desired outputs), in order to avoid over-fitting. Therefore, in the case of one
hidden layer and a dataset of about 700 positive (experimentally validated)
and 7000 negative (extracted from neutral DNA) HREs, we should limit the
number of hidden layer neurons to about 50. In the case of two hidden layers,
the maximum number of neurons on each layer is approximately 40. The amount
of negative patterns can even be increased to more than ten-fold over positive
ones (as we have much more neutral DNA in comparison of functional DNA), but
it may increase the risk of bias of the ANN model towards the most abundant
pattern.

The bipolar sigmoid function is used for activation of neuron synaptic inputs.
A series of cross-validation tests allowed us to fix its coefficients (individual for
each neuron).

For training of the feed-forward neural model, a back-propagation learning
algorithm is implemented. The weight adjustment for each neuron is represented
by the following equation:

wt+1 = wt + αt × δ × x (1)
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where wt is a vector of weights for a particular neuron at the tth step of learning,
αt is the learning parameter at the tth step (0 < at < 1, ∀t > 0), and the delta
value for each neuron of the ANN with one hidden layer and one output layer is
calculated as follows:

δoutput =
∂f(ut)

∂ut

∣∣∣∣
ut=wtx

× (dt − ot) (2)

δback-propagated =
∂f(ut)

∂ut

∣∣∣∣
ut=wtx

×
K∑

k=1

wh→kδoutput
k (3)

where dt and ot represent the desired and current outputs of the neuron respec-
tively; x is the input to the layer being considered (either hidden or output),
ut = wtx is the synaptic input to the neuron, and f(ut) is the activation function
of the neuron. For the back-propagated delta value, K is a number of neurons
on the output layer, wh→k is the weight coefficient of the connection between
hth neuron of hidden layer and kth neuron of the output layer, δoutput

k is a delta
value for the kth neuron of the output layer calculated as shown by formula (2).
The back-propagation is terminated when

i. Error tolerance for the accuracy of 99.99% is satisfied, or
ii. The desired number of back-propagation cycles or the error plateau is reached.

Learning rate α is adjusted depending on whether current level of training error
is decreasing (then α is increased by 10%), or it has jumped over a minimum
and it is better to move back slightly slower (then α is decreased by 20%).

2.3 Classification of Respective HREs with a Recurrent Neural
Network

For structure-based recognition of various HREs, we designed a recurrent neu-
ral network (RNN). It employs a quasi-heuristic approach for classification of
partially overlapped datasets, and requires domain knowledge for its design.

With a few exceptions, steroid hormone receptors bind to their response ele-
ments in a dimeric form. Thus, the structure of a response element can be treated
as a repeat. However, the half-sites of a response element can occur in differ-
ent orientations, and each still can interact with the zinc-fingers of a hormone
receptor protein’s DNA-binding domain [15,16]. The three possible structures
of HREs include direct repeat, inverted repeat, and palindromic repeat of a
consensus half-site. Therefore, the recurrent neural network is expected to clas-
sify a potential hormone response element into one of these HRE-like dimeric
structures.

The applicability of recurrent neural networks for biological sequence analysis
has recently been reviewed [17], using examples of motif detection and predic-
tion of subcellular localization of peptides. It shows that though the network
architecture reflects the presence of bias, recurrent neural networks do provide
access to biologically significant patterns.
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Recurrent neural networks work in an unsupervised manner [18]. Theoreti-
cally, the goal is to design a network that stores a specific set of equilibrium
points such that, when an initial condition for a neural system is provided, the
network eventually comes to stability at one of these equilibrium points. Thus,
the network is used for classification, and has been proven to be more flexible
and powerful than distance-based clustering. The network is recursive, so its
output is fed back as the input iteratively. With a properly designed RNN, each
input is expected to be transformed into one of the stable states of the network
in a finite number of iterations [14].

In our study, three consensuses of the respective HRE structures, and seven
non-HRE sequences taken from the papers by Thackray et al. [19] and Lieberman
et al. [20] are used as ten equilibrium points for the RNN. If the network comes
to a stable state other than the ten desired equilibrium states, the input DNA
sequence is ’unclustered’; otherwise, a certain cluster labeled 1 corresponding to
a direct repeat (DR), 2 to an inverted repeat (IR), 3 to an palindromic repeat
(ER) of the HRE half-site, and 7-10 to a non-HRE pattern is attributed to the
input. Besides, as the sigmoid activation function returns non-integer values,
the squared Euclidian distance between the final stable state and the nearest
equilibrium point is estimated; for a successful classification, it must be 50%
greater than that of the second nearest equilibrium point. In most cases, machine
precision of the equilibrium points are reached within 100 iterations.

2.4 Hardware Acceleration

After numerous tests, we have reached quite a good accuracy of the system, but its
very long processing time made it impossible to be used for genomic sizes which
are often hundreds of million of base pairs. The bottleneck is identified at the op-
eration of the recurrent ANN in the system. While for a given training set even
with thousands of sequences, the back-propagation training of the feed-forward
ANN is done once and forever, the recurrent neural network requires tens of it-
erations for each HRE-like input out of possible millions for genomic scales. We
implemented the neural network on a 4-way IBM X260 server with four 3.16GHz
CPUs, 3.25GB RAM, and 667MHz system bus. It took about 20 minutes to screen
only 1Mb of DNA with eight parallel threads for RNN operation. Therefore, we
propose hardware acceleration to make our system affordable in practice.

A full description of the acceleration with the Field-Programmable Gate Ar-
rays is presented in another paper [21]. Briefly, referring to Fig.1, this FPGA-
implemented RNN unit communicates with the rest of system implemented in
a PC via a local bus. The fabricated RNN contains 60 neurons, which operate
sequentially on ten identical neuron units. We used Verilog Hardware Descrip-
tion Language (Verilog HDL) in the circuit design for FPGA. The Alpha Data
Virtex-4LX160 board was used for FPGA design. A Windows application reads
DNA sequences predicted as HRE-like by a preceding feed-forward neural net-
work from a text file, and sends the 32bit-long input vector to a configured
FPGA board. It also obtains the output from the board, and proceeds to the
decision making module.
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Fig. 1. A hardware-accelerated hybrid neural system for HRE prediction

Arithmetic calculations of the RNN module was implemented with use of
fixed-point signed number representation, where 29 out of 32 bits were used to
represent a fractional part. The sigmoid activation function was replaced by a
polyline approximation, which allowed us to decrease area usage substantially
with the resulting accuracy changing insignificantly.

The entire on-chip RNN system could be subdivided into two constituents: the
neuron units and the control unit. The lower part of Fig. 1 shows configuration of
the ANN from a point of view of arithmetic operation. Neuron units accumulate
synaptic inputs of the neurons, activate them, and return current output vector
into the memory.

The control unit includes the counter of iterations which defines whether an
input must be put into the system for the first time (initial input). It also regu-
lates sequence of processing of neurons by neuron units, and involves verification
unit for the current output. The control unit terminates the recurrent processes
if the maximum number of iterations or a stable state (no oscillations larger
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then 0.2% amongst outputs of the last ten iterations) is reached. The counter of
neurons is reset before each iteration starts; then, it regulates the sequence of
the ten neuron units involved for calculation of sixty actual neurons, and decides
which values of weights must be selected from memory.

With the RNN implementation on Virtex-4 hardware, we achieved almost ten-
fold speedup for a recurrent neural network. With use of more advanced digital
technologies, such as flexible on-board clock management and involvement of
hyper-transport techniques instead of 66MHz PCI bus, it is possible to realize
an even faster hybrid neural solution.

3 Results

3.1 HRE Classification

First, the collected dataset of experimentally validated HREs was used to test the
capabilities of our RNN-based classification system. The results of classification
of HREs are given in the Table 1. The difference between preferred structures
of the DNA response elements for the three steroid hormones of interest – pro-
gesterone, androgen, and glucocorticoid – was found to be significant (p-value
0.007), with ARE slightly different from the two other subgroups of binding
sites - it is less tolerated to direct repeats, and in most cases prefers to bind to
palindromic response elements.

Table 1. Results of classification of training set of HREs with RNN

HRE PRE GRE ARE
⋃

Direct repeat 35 or 53.0% 225 or 59.7% 94 or 43.1% 354 or 53.6%
Inverted repeat 1 or 1.5% 3 or 0.8% 1 or 0.5% 5 or 0.8%

Palyndromic repeat 26 or 39.4% 114 or 30.2% 115 or 52.8% 255 or 38.6%
No dimeric structure 4 or 6.1% 35 or 9.3% 8 or 3.7% 47 or 7.1%∑

66 377 218 661

3.2 Genome-Wide HRE Recognition

The sensitivity and specificity values were tracked on each step of machine pro-
cessing; for calculations, ten-fold cross-validation is used.
The first step of the machine learning is to activate the trained feed-forward neu-
ral network, which recognizes HRE-like patterns. At this stage, the sensitivity
was found to be as high as 98%, that is, 15 among 661 HREs are misclassi-
fied; the specificity is 1:5.8Kb which is measured on basis of 1Mb neutral DNA
sequence.

In the next step, the recurrent neural network allows to increase specificity
level to 1:7.29Kb, while the sensitivity stays favorable in comparison with



26 M. Stepanova, F. Lin, and V.C.-L. Lin

existing HRE prediction methods (for a review, see [9]) – it is as high as 92% (6
or 9% of PREs, 37 or 10% of GREs, and 9 or 4% AREs are now misclassified,
or total 52 HREs).

Available vertebrate genomes were downloaded from the NCBI data reposi-
tory, processed, and used for system performance measurements as well. To sum
up, the average frequencies of prediction of HREs are as follows:

– Human genome (Homo Sapiens, #36.2) – 1:8.15Kb
– Chimpanzee genome (Pan Troglodytes, #2.1) – 1:8.13Kb
– Mouse genome (Mus Musculus, #36.1) – 1:7.69Kb
– Rat genome (Rattus Norvegicus, #4.1) – 1:7.11Kb
– Cow genome (Bos Taurus, #3.1) – 1:6.35Kb
– Dog genome (Canis Familiaris, #2.1) – 1:8.43Kb
– Opossum genome (Monodelphis Domestica, #2.1) – 1:7.36Kb
– Chicken genome (Gallus Gallus, #2.1) – 1:9.81Kb
– Zebrafish genome (Danio Rerio, #2.1) – 1:8.95Kb

We can see from the above that high accuracy of prediction is achieved by
the combination of feed-forward and recurrent neural networks, which is cru-
cial for the system to be used in practice. Sensitivity of 92% can be combined
with random expectation level of 1 prediction per 7.29Kb of neutral DNA and
1:8.15Kb of human genomic DNA. The parameters, though, can be adjusted for
a particular task.

4 Discussion and Conclusion

Due to the importance for regulation of vital processes, the group of steroid
hormones has been studied extensively over decades, but very few computational
methods have been available to aid experimentalists to find hormone receptor
regulatory signals. In this paper, we propose an approach which combines feed-
forward and recurrent neural networks for recognition of a subgroup of spaced,
symmetrically structured DNA motifs, and demonstrate its performance using
the examples of steroid hormone response elements. Its high level of accuracy
provides an access to a powerful method for de novo HRE prediction, and further
analysis of hormone-regulated genes as well.

The proposed approach benefits from the advantages of both feed-forward and
recurrent neural networks; they employ different strategies of machine learning
and allow to reveal different features of the patterns. The feed-forward neural
network provides a very flexible tool to model almost any dataset of interest,
but its flexibility may result in rather low specificity values. This is where the
recurrent neural network may cut in; it is able eliminate most of the false positive
HRE-like findings, comparing them against the symmetrically structured HREs.

On the other hand, training a highly accurate feed-forward neural network
and especially elaborating all the RNN-based classifications with software im-
plementation needs prohibitively long time. The hardware acceleration with
reconfigurable FPGA computing provides us with a solution.
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With use of two successive neural networks, we managed to model the HRE
training set and separate it from the neutral DNA sequences quite reliably, but
some outliers were detected. They were found through non-consensus binding
sites for progesterone, androgen and glucocorticoid receptors in the promoters
and gene regions for a number of genes: rabbit uteroglobin gene [22], chicken
lysozyme gene [23], porcine uteroferrin gene [24], pro-opiomelanocortin gene [25],
murine c-myc gene [26], late leader of the control region of the human poly-
omavirus BK [27], gene promoter of two milk protein genes (β-casein and whey
acidic protein) [28], human Na/K ATPase α1 gene promoter [29], and mouse sex-
limited protein enhancer [30]. The first three are progesterone-regulated genes,
the next five are glucocorticoid primary targets, and the last one is associated
with androgen activity. Unless they are experimental artifacts, the possible ex-
planation could lie in the area of complex protein-DNA interaction which is be-
yond DNA sequence similarity itself; it probably could be a secondary structure
of DNA, or location of surrounding nucleosomes. Nevertheless, more sensitive
procedures should be implemented, involving other conditions which could be
related to successful formation of protein-DNA complex in vivo.

The dramatic progress in experimental identification of transcription factor
binding sites is obvious. Thus, the availability of accurate algorithms for in silico
binding site prediction is of great importance. Our proposed model for steroid
receptor binding sites prediction can be used for determination of androgen,
progesterone and glucocorticoid primary target genes with high reliability. It
can also be used for detection of steroid hormone response elements de novo,
and for evaluation of known HREs as well. Finally, the proposed model can
be potentially involved for prediction of any other structured DNA motifs of
interest.
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Abstract. Human genetics is undergoing a data explosion. Methods
are available to measure DNA sequence variation throughout the human
genome. Given current knowledge it seems likely that common human
diseases are best predicted by interactions between biological compo-
nents, which can be examined as interacting DNA sequence variations.
The challenge is thus to examine these high-dimensional datasets to iden-
tify combinations of variations likely to predict common diseases. The
goal of this paper was to develop and evaluate a genetic programming
(GP) mutator suited to this task by exploiting expert knowledge in the
form of Tuned ReliefF (TuRF) scores during mutation. We show that
using expert knowledge guided mutation performs similarly to expert
knowledge guided selection. This study demonstrates that in the con-
text of an expert knowledge aware GP, mutation may be an appropriate
component of the GP used to search for interacting predictors in this
domain.

1 Introduction

Biological and biomedical sciences are undergoing a data explosion without a
corresponding knowledge explosion. This is especially true in the domain of hu-
man genetics where it is now technically and economically feasible to measure
thousands of DNA sequence variations from across the human genome. For the
purposes of this paper we will focus exclusively on the single nucleotide poly-
morphism or SNP which is a single nucleotide or point in the DNA sequence
that differs among people. It is anticipated that at least one SNP occurs ap-
proximately every 100 nucleotides across the 3x109 nucleotide human genome.
An important goal in human genetics is to determine which of the many thou-
sands of SNPs are useful for predicting who is at risk for common diseases.
This “genome-wide” approach is expected to revolutionize the genetic analysis
of common human diseases. The charge for computer science and bioinformatics
is to develop algorithms for the detection and characterization of those SNPs
that are predictive of human health and disease. Success in this endeavor will
be difficult due to nonlinearity in the genotype-to-phenotype mapping relation-
ship that is due, in part, to epistasis or nonadditive gene-gene interactions. The
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implication of epistasis from a data mining point of view is that SNPs need to
be considered jointly in learning algorithms rather than individually. The chal-
lenge of modeling attribute interactions has been previously described [1]. Due
to the combinatorial magnitude of this problem, intelligent analysis strategies
are needed.

1.1 Concept Difficulty

Combining the difficulty of modeling nonlinear attribute interactions with the
challenge of attribute selection yields for this domain what Goldberg [2] calls a
needle-in-a-haystack problem. That is, there may be a particular combination of
SNPs that together with the right nonlinear function are a significant predictor
of disease susceptibility. Considered individually they may not look any different
than thousands of other noisy SNPs not involved in the disease process. Under
these models, the learning algorithm is truly looking for a genetic needle in a
genomic haystack. A recent report from the International HapMap Consortium
[3] suggests that approximately 300,000 carefully selected SNPs may be necessary
to capture all of the relevant variation across the Caucasian human genome.
Assuming this is true (it is probably a lower bound), we would need to scan
4.5x1010 pairwise combinations of SNPs to find a genetic needle. The number of
higher order combinations is astronomical. Is GP suitable for a problem like this?
At face value the answer is no. There is no reason to expect that a GP or any
other wrapper method would perform better than a random attribute selector
because there are no building blocks for this problem when accuracy is used as
the fitness measure. The fitness of any given classifier would look no better than
any other with just one of the two correct SNPs in the model. Indeed, we have
observed this in our preliminary work [4,5]. Subsequent work has shown that by
integrating expert knowledge into a selection scheme, it is possible to develop
a GP wrapper that is able to perform better than a random attribute selector
[6]. Work here examines whether or not it is also possible to integrate expert
knowledge into mutation to develop a GP which performs better than one with
a random attribute mutator.

1.2 Genetic Programming and Mutation

Genetic programming (GP) is an automated computational discovery tool that
is inspired by Darwinian evolution and natural selection [7,8,9,10,11,12,13]. The
goal of GP is to evolve computer programs to solve problems. This is accom-
plished by first generating computer programs that are composed of the building
blocks needed to solve or approximate a solution to a problem. Each generated
program is evaulated, and the good programs are selected, recombined, and mu-
tated to form new computer programs. This process of selection based on fitness
and recombination and mutation to generate variability is repeated until a best
program or set of programs is identified. Genetic programming and its many
variations have been applied successfully to a wide range of different problems
including data mining, knowledge discovery e.g. [14], and bioinformatics [15].
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Despite the many successes, there are a large number of challenges that GP
practitioners and theorists must address before this general computational dis-
covery tool becomes a standard in the modern problem solver’s toolbox. Yu et al.
[16] list 22 such challenges. Several of these are addressed by the present study.
Previous work has shown that by integrating expert knowledge, the GP ap-
proach can successfully pick attributes from large and high-dimensional datasets
[6]. Here we will examine another method of taking advantage of pre-processing
based expert knowledge. Such methods may also be used for integrating domain
specific or literature based expert knowledge. This paper explores the effect of a
GP mutator which integrates expert knowledge on genome-wide genetic analysis
in the domain of human genetics.

Previous work has shown that for a näıve mutation operator in a wide variety
of problem domains, performance for näıve mutation and näıve crossver did not
greatly differ [17]. There were, however, problem domains and parameter settings
where mutation was found to be more or less suitable. In general mutation was
more successful with more generations and crossover more successful with larger
populations but the effect differed by problem domain. Previous work on expert
knowledge guided mutation for genetic programming has used collective memory
which contains knowledge gained by examining the population state at earlier
time points within the same GP run [18]. Here we focus on expert knowledge
gained by statistical pre-processing of the input data.

The goal of the present study was to develop and evaluate a GP mutation
operator appropriate for genetic analysis of genome-wide data. Given the con-
cept difficulty, we are generally interested in using expert knowledge to facilitate
the generation and exploitation of good building blocks. We specifically address
whether pre-processed expert knowledge can become useful for mutating trees
after recombination and reproduction. In this specific situation mutation or ran-
dom chance must, in addition to seeding the population with good attributes,
combine the best attributes as no expert knowledge is utilized during selection
or recombination. The success of expert knowledge in selection is limited to at-
tributes available in the current population, but the use of expert knowledge
in mutation is not limited to the state of the current population as attributes
not present may be added. As both operators are dependent on different fac-
tors, integration of this mutation operator into a GP utilizing expert knowledge
throughout may yield benefits beyond those found in this study.

2 Genetic Programming Methods

2.1 Expression Tree Representation

Figure 1A illustrates an example GP tree for this problem. We have intentionally
kept the initial solution representation simple with one function in the root node
and two children to evaluate the best GP parameterization. More complex trees
(e.g. Figure 1B) will be explored once we understand when and how the GP
works with the simpler trees. We have selected the multifactor dimensionality
reduction or MDR approach as an attribute constructor for the function set
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Fig. 1. Example GP trees for solutions (A). Example of a more complex tree that will
be considered in future studies (B).

because it is able to capture interaction information (see Section 3). Each tree
has two leaves or terminals consisting of attributes. In the case of our study, the
terminal set consists of 1000 attributes.

2.2 Fitness Function

The fitness function used in this study was accuracy estimated using a näıve
Bayes classifier. Here, accuracy is defined as how well the model predicts the
case-control status of each simulated individual. Each tree is evaluated as a
constructed attribute using the MDR function in the root node. It is this single
constructed attribute with two levels that is assessed using the classifier. The
classification accuracy of a tree is its fitness.

2.3 A Sensible Mutation Operator

The goal of this study was to use expert knowledge to ensure good building
blocks are reintroduced into the population through mutation. We compared the
random mutator with a new sensible or expert knowledge-guided mutator. The
random mutator works by mutating the designated percentage of the population
each generation. For each chosen individual a random attribute is picked for
mutation and replaced with an attribute selected randomly from the set of all
attributes. For the sensible mutator, we used pre-processed attribute quality from
the Tuned ReliefF (TuRF) algorithm as our expert knowledge (see Section 4).
The sensible mutation operator is modeled after the sensible selection operator
from Moore and White [6] and mutates individuals from some percentage of the
population with the greatest difference in TuRF scores between the attributes,
chooses to mutate the attribute in that individual with the lowest TuRF score
and iteratively creates trees where the mutated attribute is replaced with every
attribute from the top 1% of TuRF scores. Next, trees are evaluated, and the
tree with the best accuracy is retained in the population as the result of the
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mutation. This sensible mutator ensures that poor building blocks are replaced
by good building blocks throughout evolution. This method is designed to mutate
attributes which are unlikely to lead to success and combine the newly chosen
attribute with attributes which are likely to be involved in successful models.
In the event that no combination of attributes leads to success, a higher TuRF
scored attribute than the one which was mutated is retained in the population
and may participate in recombination. The percentage of the population chosen
for mutation is adjusted to account for the iterative replacement attempts so
that the number of mutation attempts remains the same between the random
mutator and the sensible mutator.

2.4 Parameter Settings

For this study, we used a population size of 500 and ran the GP for 10 genera-
tions as previously used by Moore and White [6]. We used a crossover probabil-
ity of 0.9 and varied the mutation probability in increments of 10%. Since each
tree has exactly two attributes, an initial population size of 500 trees will in-
clude 1,000 total attributes. Each initial population was generated such that
each of the 1,000 attributes was represented once and only once across the
500 trees. This sensible initialization ensures that all building blocks are rep-
resented. It is important to note that the probability of any one tree receiving
both functional attributes (i.e. the solution) is only 0.001x0.001 or 10−6. Thus,
it is unlikely that any one tree in the initial population will be the correct so-
lution. The size of the search space is approximately 500,000 or 1000 choose
2. With a population size of 500 and 10 generations the GP is exploring at
most of 1% of the search space. The GP was implemented in C++ using GAlib
(http://lancet.mit.edu/ga/). The crossover operator was modified to ensure bi-
nary trees of depth one.

3 Multifactor Dimensionality Reduction (MDR) for
Attribute Construction

Multifactor dimensionality reduction (MDR) was developed as a nonparamet-
ric and genetic model-free data mining strategy for identifying combination of
SNPs that are predictive of a discrete clinical endpoint [19,20,21,22]. The MDR
method has been successfully applied to detecting gene-gene interactions for a
variety of common human diseases including adverse drug reactions [23]. At the
heart of the MDR approach is an attribute construction algorithm that creates a
new attribute by pooling genotypes from multiple SNPs. Constructive induction
using the MDR kernel is accomplished in the following way. Given a threshold
T, a multilocus genotype combination is considered high-risk if the ratio of cases
(subjects with disease) to controls (healthy subjects) exceeds or equals T, other-
wise it is considered low-risk. Genotype combinations considered to be high-risk
are labeled G1 while those considered low-risk are labeled G0. This process con-
structs a new one-dimensional attribute with levels G0 and G1. It is this new
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single variable that is returned by the MDR function in the GP function set.
The MDR method is described in more detail by Moore et al. [21]. Open-source
MDR software is freely available from www.epistasis.org.

4 Expert Knowledge from Tuned ReliefF (TuRF)

Our goal was to provide an external measure of attribute quality that could
be used as expert knowledge by the GP. Here this external measure used was
statistical, but it could just as easily be biological. There are many statistical
and computational methods for determining the quality of attributes. Our goal
was to identify a method that is capable of identifying attributes that predict
class primarily through dependencies or interactions with other attributes. Kira
and Rendell [24] developed an algorithm called Relief that is capable of detect-
ing attribute dependencies. Relief estimates the quality of attributes through
a nearest neighbor algorithm that selects neighbors (instances) from the same
class and from the different class based on the vector of values across attributes.
Weights (W) or quality estimates for each attribute (A) are estimated based on
whether the nearest neighbor (nearest hit, H) of a randomly selected instance
(R) from the same class and the nearest neighbor from the other class (nearest
miss, M) have the same or different values. This process of adjusting weights
is repeated for m instances. The algorithm produces weights for each attribute
ranging from -1 (worst) to +1 (best). Kononenko [25] improved upon Relief by
choosing n nearest neighbors instead of just one. This new ReliefF algorithm has
been shown to be more robust to noisy attributes and missing data [26] and is
widely used in data mining applications.

We have developed a modified ReliefF algorithm for the domain of human
genetics called Tuned ReliefF (TuRF). We have previously shown that TuRF
is significantly better than ReliefF in this domain [27]. The TuRF algorithm
systematically removes attributes that have low quality estimates so that the
ReliefF values if the remaining attributes can be re-estimated. We applied TuRF
as described by Moore and White [27] to each dataset.

5 Data Simulation and Analysis

The goal of the simulation study is to generate artificial datasets with high con-
cept difficulty to evaluate the power of GP in the domain of human genetics.

Table 1. Penetrance values for an example epistasis model

AA (0.36) Aa (0.48) aa (0.16)

BB (0.36) 0.077 0.656 0.880

Bb (0.48) 0.892 0.235 0.312

bb (0.16) 0.174 0.842 0.106
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We first developed 60 different penetrance functions (i.e. genetic models) that
on genotypes from two SNPs in the absence of any independent effects. The 60
penetrance functions include groups of five with heritabilities of 0.025, 0.05, 0.1,
0.2, 0.3, or 0.4. These heritabilities range from a very small to a large genetic
effect size. In half of the cases, each functional SNP had two alleles with frequen-
cies of 0.4 and 0.6. In the other half of the cases, each functional SNP had two
alleles with frequencies of 0.2 and 0.8. Table 1 summarizes the penetrance values
to three significant digits for one of the 60 models. The values in parentheses
are the genotype frequencies. Each of the 60 models was used to generate 100
replicate datasets with a sample size of 1600. Each dataset consisted of an equal
number of case (disease) and control (no disease) subjects. Each pair of func-
tional SNPs was combined within a genome-wide set of 998 randomly generated
SNPs for a total of 1000 attributes. A total of 6,000 datasets were generated and
analyzed.

For each set of 100 datasets we counted the number of times the correct
two functional attributes were selected as the best model by the GP. This
count, expressed as a percentage, is an estimate of the power of the method.
This percentage represents how often the GP finds the answer that we know is
present.

6 Experimental Results

Figure 2 summarizes the average power for each method for the models with
0.6 major allele frequency. Results for 0.8 major allele frequency were similar
and are available upon request. Each point represents the power averaged over
500 datasets (5 models with 100 datasets each). Power represents the number of
times out of 100 that the GP found the right two attributes. The unfilled circles
represent the average power for a GP using the random mutation operator with
otherwise identical parameters. The filled circles represent the average power
for a GP using our sensible mutation operator with TuRF pre-processing scores
as expert knowledge. Within each parameter setting mutation was varied such
that 0 to 100 percent of the individuals were mutated during each generation
for the random mutator in increments of 10 percent. For the sensible mutation
operator, this corresponds to 0 to 10 percent of the population being mutated
during each generation in increments of 1 percent to retain identical numbers of
attempted mutations. These results clearly show the value of using TuRF scores
in the mutation operator.

Comparing the TuRF sensible mutator to TuRF sensible recombination shows
that the TuRF mutator performs similarly to the TuRF selector [6]. The pre-
viously examined TuRF selector showed slightly higher power, though that
is not unexpected. Without an expert knowledge guided selector, there was
no way to utilize the strength of attributes already in the population for
recombination.
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Fig. 2. Summary of the power of Random Mutation (Empty Circles) and Sensible Mu-
tation (Filled Circles) using sensible initialization with accuracy for fitness under with
random mutation equivalents (RMEs) from 0 to 100 under models with heritabilities
from 0.025 to 0.4 and a major allele frequency of 0.6
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7 Discussion and Conclusion

There are several conclusions to draw from this study. Again it has been shown
that expert knowledge can provide building blocks necessary to find the ge-
netic needle in the genome-wide haystack. Secondly, sensible mutation seems to
perform similarly to using expert knowledge in selection and much better than
random mutation. Sensible mutation itself is deterministic given a current pop-
ulation and set of TuRF scores. For the purposes of studying sensible mutation,
we have separated random and sensible mutation. To retain the ability to reach
the entire search space, in practical situations the pairing of sensible mutation
and a non-deterministic mutation operator would probably be the best analysis
strategy. In addition, combining sensible mutation with similar knowledge guided
strategies in selection and recombination may provide additional benefits.

Previous work has focused on the use of expert knowledge in initialization,
selection, and fitness [6,5]. We have focused on sensible mutation for this study.
Future work will examine how different operators that integrate expert knowl-
edge may be combined. Does using expert knowledge to guide both mutation
and recombination work better than either alone?

In this work the building blocks of outside knowledge were obtained by pre-
processing data with TuRF. For the realm of genetic studies, outside knowledge
could also be obtained from the numerous public databases available to geneti-
cists. Tools are being developed which integrate knowledge across these public
databases and generate information about relationships between genes and dis-
ease in the context of protein interactions [28]. Future work will also focus on
integrating multiple distinct expert knowledge types and sources.

We have again found that, given domain specific building blocks and operators
which use these building blocks it is possible for a GP to outperform a random
search, even for a needle-in-a-haystack problem. This indicates that GP may be
a useful wrapper for genome wide analysis of common human diseases with a
complex genetic architecture. Moore et al. have recently shown that Symbolic
Discriminant Analysis (SDA), which uses a GP approach to generate models, was
able to successfully model predictors of atrial fibrillation in a well characterized
dataset which included a two-way epistatic interaction [29]. Integrating expert
knowledge into the SDA approach should increase the efficiency of the search
and assist SDA in finding higher order nonlinear interactions and allow SDA to
be applied to larger genome-wide datasets.
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Abstract. The human adenosine A2a receptor (A2aR) belongs to the family of 
G-protein coupled receptors (GPCRs), characterized by seven transmembrane 
(TM) helices. TMs are involved in various cellular processes including 
dimerization-mediated recognition of ligand. TM5 has been suggested to self 
associate and may be involved in the dimerization of A2aR. However the role of 
dimerization and the motifs involved in dimerization of TM 5 have not been 
revealed. To study the folding and assembly of A2aR, the cDNA of the 
adenosine A2aR from rat brain was isolated and sequenced (DQ098650). The 
computational analysis (gi|70727927|gb|AAZ07991.1|) showed that the protein 
of 42 amino acid residues aligned in TM 5 domain region of AA2AR_RAT 
(P30543). PROSITE search illustrated that the motif PMNYM was conserved in 
A2aR and the motif PMSYM was present in A2bR respectively. The minimal 
dimerization motif in the TM 5 domain of the rat A2a receptor sequence 
DQ098650 has found to be the motif PXXXM/Y. 

Keywords: Adenosine A2a receptor, cDNA, GPCRs, RT-PCR, TM 5. 

1   Introduction 

Adenosine A2a receptors have a localized distribution and have emerged as a 
promising drug target for treating many neurological and psychiatric disorders such as 
Parkinson’s disease [4,5,6,7], schizophrenia and affective disorders [8,9,10]. The 
adenosine A2a receptors (A2aR) belong to the G-protein coupled receptor (GPCR) 
super family characterized by seven transmembrane (TM) helices arbitrating a surfeit 
of signals across the plasma membrane in the cell modulating many physiological 
processes [11,12,13]. Assembly of transmembrane (TM) domains is a critical step in 
the function of membrane proteins. The determinants of transmembrane receptors 
structure, folding, assembly, activation mechanism and oligomeric states to function 
as monomers, dimers, or larger oligomers are wrapped. The existence of GPCRs as 
homodimers, heterodimers, or even as higher order oligomers [14, 15, 16, 17] assist in 
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GPCRs’ functions, including ligand binding, receptor activation, desensitization, and 
trafficking, as well as receptor signaling [18, 19, 20]. The essential residues required 
for recognition of adenosine receptor agonists and/or antagonists binding within the 
transmembrane helical domains (TMs) 3, 5, 6, and 7, coincide largely with the 
corresponding amino acids of the binding site of cis-retinal in rhodopsin, although 
there are additional interaction sites within TMs 6 and 7 of the ARs in comparison 
with the binding site of rhodopsin [21]. Essentially, the constitutive and ligand-
induced oligomerization has been established in other receptors [22]. However 
mechanism of intermolecular interaction remains unclear. A five residue motif 
(GxxxG) responsible for specific homodimerization for TM helices of a bioptic 
membrane protein have been reported. The GxxxG motif present in TM 1 of yeast α-
factor is essential in oligomerization. Polar clamps and serine zipper motifs have also 
been identified. Since GPCRs may not have similar structures due to differences in 
helix-orientation, helix-helix interactions different mechanism of folding may exist in 
GPCR [23]. The ability of TM in oligomerization and dimerization has been reported 
recently and the involvement of the five residue PxxxM pattern have been suggested 
in dimerization of A2aR [24]. To study the mechanism of ligand interaction to the 
A2aR, we implicated our attention to understand the determinants of A2aR folding and 
assembly.  

In the present study, a primer set specific for adenosine A2a receptor gene encoding 
TM 5 domain region have been designed. A partially amplified cDNA fragment of 
approx. 127bp was obtained by RT-PCR and sequenced (NCBI Gen Bank database 
accession no. DQ098650). Computation of sequence analysis showed that the rat 
brain adenosine A2a receptor protein of 42 amino acid residues (gi|70727927| 
gb|AAZ07991.1|) aligned in TM 5 domain region of AA2AR_RAT (P30543) and 
exhibited 85.17% homology (36 amino acid residues) with TM 5 domain region of 
AA2AR_HUMAN (P29274). We carried the PROSITE search of PMNYMV residues 
present in the submitted sequence with the known amino acid sequences of 
mammalian adenosine receptors. We found that PMNYM motif was conserved in the 
TM 5 region of all mammalians A2aR and PMSYM motif was present in TM 5 region 
of all mammalians A2bR [25], thus suggesting a general role of these patterns/motifs 
in TM assembly. This is the first reported evidence of showing the presence of 
conserved motifs PMNYM in A2aR and PMSYM in A2bR respectively, which may be 
involved in transmembrane domain self-association, and lays ground for more 
apprehended analysis of adenosine receptors dimerization. The dimerization of A2aR 
involving PMNYM motif present in TM 5 is focus of our further investigations 
employing  in silico and in vitro experimental studies.  

2   Materials and Methods 

2.1   Dissection and Isolation of Rat Brain Striatal Tissues 

Adult wistar rats (~250g from animal house facility at Dr. B.R. Ambedkar Center for 
Biomedical Research, India) were sacrificed by cervical dislocation and decapitated. 
The freshly collected skull was cut-opened from the dorsal side. Whole brain was 
immediately placed in a sterilized glass petridish containing ice-cold PBS (pH 7.4) 
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and striatal tissue was dissected out from the mid-brain region. Striatal tissue was 
processed immediately for the RNA extraction [26]. 

2.2   Total RNA Isolation 

Total striatal RNA was extracted by TRIzol reagent method [27]. Briefly, tissue (100-
200mg) was rinsed in cold PBS buffer (137mM NaCl, 2.7mM KCl, 4.3mM 
Na2HPO4, 1.4mM KH2PO4, pH 7.5), placed in 1 ml of Trizol reagent (0.8M 
Guanidine thiocyanate, 0.4M Ammonium thiocyanate, 0.1M Sodium acetate pH 5.0, 
38% Saturated phenol and 5% Glycerol) and immediately homogenized with a glass 
homogenizer to quickly dissociate the tissue and incubated at room temperature for 3 
minutes.  About 200µl of the chloroform (Sigma-Aldrich, USA) was added to the 
tube, mixed gently and incubated at room temperature for 10 minutes. The sample 
was centrifuged at 13,000 rpm for 15 minutes at 40C. Clear supernatant containing 
total RNA and trace amount of DNA was transferred to a fresh eppendorf tube and 
was precipitated by adding chilled isopropanol (at -200C) (Sigma-Aldrich, USA). The 
tube was kept at -200C for 30 minutes and centrifuged at 13,000 rpm for 10 minutes at 
40C. RNA pellet was washed twice with ice-cold 70% ethanol and air dried for 30 
minutes. Pellet was resuspended in 20µl of Diethylpyrocarbonate (DEPC)-treated 
water. All solutions were prepared from DEPC-treated autoclaved, distilled water. 

2.3   DNase I Treatment 

To the tube containing total RNA, 2 µl of 10X DNase buffer (0.5M Tris-HCl pH 7.5, 
0.5mg/ml BSA) and 2 µl of 10 U/µl DNase I (Sigma-aldrich; 20 units total) was 
added and  incubated at 37°C for 2 hours. RNA was re-extracted by adding: 2 µl of 
2M sodium acetate, pH 4.0, 22 µl water saturated phenol and 6 µl Chloroform-
isoamyl alcohol. vortexed vigorously for 15 seconds. Placed on wet ice for 15 minutes 
and centrifuged for 10 minutes at 4°C. Upper layer was transferred to fresh tube [28].  

2.4   mRNA Purification and Quantitation 

Striatal mRNA was extracted by Nucleotrap mRNA mini purification kit (BD 
Biosciences, USA) by using manufacturer’s protocol. Purified mRNA was quantitated 
by using UV/vis. Spectrophotometer (Schimadzu Corp, Kyoto, Japan) [29].  

2.5   Primer Designing 

Specific primers were designed based on the TM 5 sequence of the adenosine A2a 
receptor DNA from Rattus norvegicus (30). Primer 3 (online software for primer 
designing) was used to evaluate secondary priming sites and inter and intra-primer 
complementation (31).  

2.6   RT-PCR Amplification 

Reverse transcriptase (RT)-PCR was performed on the purified mRNA using a 
Titanium One-Step RT-PCR kit (Clontech/BD Biosciences, Palo Alto, CA) according 
to the manufacturer’s protocol. A forward oligo DNA primer with sequence (5’-CCA 
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TGC TGG GCT GGA ACA-3’), a reverse oligo DNA primer with sequence (5’ –
GAA GCG GCA GTA ACA CGA ACG-3’) and an oligo (dT)17 primer were used in 
the RT-PCR reaction at a concentration of 45 µmol/L (primers synthesized by 
Microsynth, Switzerland). A mouse ß-actin primer (Clontech) served as the positive 
control. The RT-PCR reaction and amplification were performed under the following 
conditions: 1 hour (50°C), 5 minutes (94°C), 30 times (92°C 1 minute, 55°C 1 
minute, 72°C 1 minute), 2 minutes (68°C). The amplified RT-PCR product was then 
subjected to electrophoresis on a 1.5% agarose gel (0.5 µg/ml ethidium bromide) for 
1.5 hours at 80 V. The gel was visualized using Alpha Imager 1220 documentation 
and analysis system (Alpha Innotech Corporation, San Leandro, California). The PCR 
product (approx. 150bp fragment) was eluted from the low melting agarose and 
purified by Genei quick PCR purification kit (Bangalore genei, India). Purified 
fragments were lyophilized and sent to Microsynth, Switzerland for sequencing. 

2.7   Sequence Analysis 

Nucleotide sequence of the cDNA fragment was analyzed by Nucleotide-nucleotide 
BLAST (blastn) to find out cDNA fragment homology with all organism database and 
was submitted online to NCBI GenBank database [32]. Further, PSI-BLAST was 
carried on SWISS Prot Data Base for determining the positions of conserved amino 
acids using GAP extension 7/2 having opening penalty 7 and extension penalty 2 
[33]. Multiple sequence alignment was done by Clustal-X (Version 1.83) to find out 
sequence homology to human and rat brain adenosine A2a receptor TM 5 domain with 
submitted sequence (accession no. AAZ07991.1). PROSITE search was carried to 
find out conserved motif. 

3   Results and Discussion 

3.1   RT-PCR Amplification of Adenosine A2a Receptor cDNA Encoding TM 5 
Domain  

The TM4 and TM5 have been shown to be involved in intradimeric contact in 
oligomeric molecular model of rhodopsin [34, 35, 36] while TM1, TM2, and the 
cytoplasmic loop connecting TM5 and TM6, facilitate the formation of rhodopsin dimer 
rows.  Two conserved serine residues in TM 5 postulated to be part of a ligand-binding 
site in the adrenergic receptor [37]. The amino acid sequence encoded by cDNA 
fragment from rat brain contained conserved sequences which had characteristics of the 
G-linked class of receptors and displayed sequence homology in TM 5 domains with the 
human A2a receptors (85%). We designed highly specific primer set by considering the 
exon sequence of adenosine A2a receptor gene to isolate the cDNA fragment encoding 
TM 5 domain of rat brain adenosine A2a receptor using Primer3 primer design tool 
(http://frodo.wi.mit.edu/cgi-bin/primer3/primer3_www.cgi) [38].). Rat brain striatal 
RNA was isolated using TRIzol reagent method and was depicted by 1% agarose gel 
electrophoresis (Fig.1). A desired cDNA fragment of approximately 150bp was 
obtained by RT-PCR  
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Fig. 1. Total rat brain striatal RNA. TRIzol reagent was used to isolate the total RNA . Lane 
1-5 represents two distinct bands of 28S rRNA and 18S rRNA. 

 

Fig. 2. RT-PCR products. Single stranded cDNA was synthesized from 1µg of total poly (A) + 

striatal RNA using MMuLV-RTase. Lane 1. Control (mouse β-actin cDNA product, 540bp), 
Lane 2 & 3. Amplified cDNA fragment of approx. 150bp, Lane 4. 100bp DNA marker, Light 
faint bands below 100bp represents non-specific cDNA fragments. 
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amplification of purified rat brain mRNA (Lane 2 & 3, Fig. 2).  Mouse β-actin primer 
set was used as control to obtain a cDNA product of 540bp (Lane 1.). Approximate 
size of the amplified cDNA fragment was illustrated with the aid of a 100bp DNA 
ladder. Faint bands below 100bp represent the non-specific fragments or primer 
dimers. The purified cDNA fragments possessed 127bp length on sequencing 
(Microsynth, Switzerland). The sequence was submitted to the GenBank database 
(Accession No. DQ098650, Dated: 19 Jun, 2005). 

3.2   Sequence Analysis of Rat Brain Adenosine A2a Receptor cDNA 

In order to enable mechanistic understanding of A2aR, computational studies were 
carried to predict the possible interaction interfaces. We conceded the evolutionary 
relation existing among the adenosine receptors in terms of their sequences that is 
measurable in common elements of their structural and functional features. Sequence 
analysis of amplified rat adenosine A2a receptor cDNA was carried by Nucleotide-
nucleotide BLAST (blastn) with all organisms gene database. We found a total of 69 
blast hits and it was found that rat (Rattus norvevicus) adenosine receptor mRNA 
exhibited 90% homology (Score =  178 bits (90),  Expect = 3e-42 Identities = 96/98 
(97%), Gaps = 0/98 (0%) with the isolated cDNA sequence. Besides, it has also been 
observed that mouse (Mus musculus) strain C57BL/6J clone rp23-288i20 showed 
68% homology (Score = 135 bits (68), Expect = 4e-29 Identities = 89/96 (92%), Gaps 
= 0/96 (0%)), Homo sapiens ADORA2A, mRNA (cDNA clone IMAGE:100000002) 
showed 34% homology (Score = 67.9 bits (34),  Expect = 7e-09  Identities = 67/78 
(85%), Gaps = 0/78 (0%)) with the RT-PCR amplified cDNA fragment of rat brain 
adenosine A2a receptor.  

3.3   Multiple Sequence Alignment of cDNA Derived Amino Acid Sequence  

In the application to over 700 aligned GPCR sequences from classes A (rhodopsin-
like), B (secretin-like) and C (metabotropicglutamate-like), an enhanced 
evolutionary trace method using Monte-Carlo techniques [39] suggested a potential 
functional-site on the lipid exposed faces of TM5 and TM6 is common to each 
family or subfamily of receptors [40] and therefore may be engaged in dimerization 
interface of GPCRs having specific detectable patterns/motifs. To identify such 
pattern/motif, single code amino acid sequence (gi|70727927|gb|AAZ07991.1|) of 
the submitted cDNA sequence of Rattus norvegicus (accession no. DQ098650) was 
retrieved from NCBI protein database. The rat A2a receptor sequence (accession no. 
DQ098650) was input as a query in PSI-BLAST with inclusion threshold 0.005 
(Calculation matrix BLOSUM 62 and E-value 0-1) to find the occurrence of 
specified pattern in the sequence. Sequences showing identities more than 80% 
were selected for multiple sequence alignment (Clustal-X) [41].  The results 
showed that rat brain adenosine A2a receptor protein of 42 residues 
(gi|70727927|gb|AAZ07991.1|) aligned in TM 5 domain region of AA2AR_RAT 
(P30543) and exhibited 85.17% homology (36 residues) with TM 5 domain region 
of AA2AR_HUMAN (P29274) (Fig. 3).  
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Fig. 3. Homology alignments cDNA sequence of adenosine A2a receptor Rattus norvegicus 
(gi|70727927|gb|AAZ07991.1|) and known mammalian A2a receptor  sequences lie in TM5 
domain 

Previously, it has been reported that TM helix dimerization motifs GxxxG, AxxxA, 
SxxSSxxT, polar clamps, serine zipper, leucine zipper do not appear in TM5. 
However, statistical analysis of amino acid patterns in TM helices revealed that PM4 
pair (PxxxM) was the most overpresented doublet pattern from any combination  
of PxxxY doublet pattern suggesting its role in the adenosine A2a receptor 
dimerization [24].  

AA2A_HUMAN    (166) CLFEDVVPMNYMVYFNFFAC (185)
AA2A_CAVPO     (163) CLFEDVVPMNYMVYYNFFAF (182) 
AA2A_MOUSE    (161) CLFEDVVPMNYMVYYNFFAF (180) 
AA2A_RAT       (161) CLFEDVVPMNYMVYYNFFAF (180) 
AA2A_CANFA     (166) CLFEDVVPMNYMVYYNFFAF (185) 
Q4F987_RAT  (8)   CLFEDVVPMNYMVYYNFFAF   (27) 
AA2B_CHICK     (171) CLFENVVTMSYMVYFNFFGC (190) 
AA2B_MOUSE    (171) CLFENVVPMSYMVYFNFFGC (190) 
AA2B_RAT      (171) CLFENVVPMSYMVYFNFFGC (190) 
AA2B_HUMAN    (171) CLFENVVPMSYMVYFNFFGC (190) 

 

Fig. 4. UniProtKB/Swiss-Prot Hits for USERPAT1 {PMNYMV} motif on all (release 51.0), 
UniProtKB/TrEMBL (release 34.0), PDB (2-Nov-2006) databases sequences 

The PROSITE search was carried using PMNYMV residues present in the submitted 
sequence to examine the occurrence of this pattern in known amino acid sequences of 
mammalian adenosine receptor. We found that PMNYM motif was conserved in the 
TM 5 region of all mammalians A2aR and PMSYM motif was present in TM 5 region 
of all mammalians A2bR. From the detailed domain sequence descriptions employing 
UniProtKB/Swiss-Prot (Fig. 4 www.expasy.org), we found that 42-residue sequence 
contains only one PM4 pattern (PMNYM) that lies in the TM 5 domain, the analysis 
revealed a significant difference in the distribution of conserved TM 5 domain motif 
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at subtype level of adenosine receptors. In adenosine A2a receptors, the motif 
PMNYM is highly specific and conserved, however, in adenosine A2b receptor 
asparagine (N) residue is replaced by serine (S) generating the motif PMSYM [42, 
43] thus differentiating the two isoforms of receptors functionally. Finally, we 
interpret in the context of transmembrane dimerization motifs that conserved motif 
(PxxxM) may play a role in the dimerization of adenosine receptors .The motif 
PMNYM of A2aR and PMSYM of A2bR may be involved in TM assembly of the two 
isoforms of the receptors respectively. The information may provide an insight into 
the molecular mechanism of receptor-ligand interaction leading to design of tailored 
compounds. 
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Abstract. Chicken genome AT and GC skews for individual chromosomes 
were visualized simultaneously using a novel method of 2-dimensional color-
coded pixel matrix. The visualizations were compared to those of human, 
mouse and possum genomes. A strikingly strong correlation of AT skew and 
GC from small to large scale in chicken genome was found, compared to the 
other vertebrates. Some local skew correlations were also found for the other 
vertebrates, but only in small genomic scale. Quantitative measures of 
correlation were developed, and confirmed the special characteristic of chicken 
chromosomes. Possible explanations for uniqueness of birds in this respect are 
discussed. The phylogenetic distribution and evolutionary pressures responsible 
for this previously unreported skew correlation warrant further study.  

Keywords: AT/GC skew, skew correlation, chicken genome, chromosome, 
visualization, 2D. 

1   Introduction 

Division of genomes to large-scale segments of low and high GC% (isochores) has 
been attributed to natural selection [1], mutational biases, biased gene conversion [2] 
and recombination [3]. In addition, the nucleotide skews (A-T)/(A+T) and (C-
G)/(G+C) can vary locally and seem to be related to gene distribution, transcription 
direction and the origin of replication and many other important biological properties 
in bacteria [4] and in mammals [5]. This suggests that genomes at a local scale need 
frequently to deviate from Chargaff’s 2nd rule [6], which states that in the whole 
genome scale the frequencies of A and T are similar in single stranded DNA, as well 
as the frequencies of G and C [7]. 

Traditionally, CG-skews have been analyzed by using separate cumulative skew 
diagrams [8]. Recently AT and CG skews have been combined as cumulative total 
skew (sum of AT and CG skews) over 1 kb non-overlapping windows, and used for 
prediction of replication origins in mammalian genomes [5]. Bacterial genomes [9] 
and organellar genomes [10] show correlations between nucleotide skews but there is 
little data from higher eukaryote main genomes in this respect. 
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Visualizations of GC skew for circular bacterial genomes has been developed 
[11,12], but these are not suitable to display skew correlation in large eukaryotic 
genomes. Therefore other better methods are needed for large-scale easy visualization 
and analysis of AT and CG skews for whole genomes and eukaryotic chromosomes. 
We develop here a new method of 2-D color display to show simultaneously both AT 
skew and GC skew at varying scales in whole chromosomes. Correlation of the skews 
is easily seen as symmetry along the diagonal in the 2D matrix representation. 

A new summary parameter is developed for symmetry level (correlation) of AT 
and CG skews. The developed new visualization method, called Base Skew Double 
Triangles (BSDT), and correlation quantitation method facilitate nucleotide skew 
comparisons between various genomes and at various genomic scales. The BSDT 
visualization software and related information is available at request from the authors. 

The new visualization method and quantitative correlation measures discovered 
that chicken chromosomes have a strong skew correlation in large scale, in strong 
contrast to the three higher vertebrates studied (opossum, mouse, human). Possible 
explanations for this difference are discussed. 

2   Methods 

Nucleotide skews show preponderance of one nucleotide frequency over another, e.g. 
AT skew = (A + T) / (A – T). They are normally calculated over limited windows, or 
cumulatively along the sequence. In contrast, here we visualize the AT skew and CG 
skew of whole chromosomes in a square matrix of pixels at scale of 1024*1024 

pixels. The DNA sequence is divided into 1024 equal size windows, iW , with 

window length 1024/Ll =  where L  is the length of the whole sequence. For any 

pair m,n<1024, m<n, we define the matrix of subsequences from mW to nW  as 

U
n

mi

i
nm WD

=

=,  (1) 

and the AT and CG skews of nmD , can be denoted as
AT

nmD ,  and
GC

nmD , . By defining a 

RGB color function, we draw two symmetrical pixels (m,n) and (n,m) (at the 

symmetry position) with color )( ,
AT

nmDcolor and )( ,
GC

nmDcolor . When the skew 

value changes from high negative through zero to high positive value, the color 
changes from deep blue through blue, pink, black, yellow, green to deep green (see 
Figure 1a). For simultaneous visualization of both AT and CG skews at all scales, we 
us a color square consisting of two triangles, separated by the diagonal, the bottom-
left for the CG skew and the top-right for AT skew. We call this image of triangles 
Base Skew Double Triangles (BSDT). The skews of 10242/2=524288 segments are 
shown in one triangle. Each point in the square represents a base skew of a different 
subsequence, The changes in AT and GC skews are visualized clearly as color 
gradients at different scales and locations in the chromosome sequence. Thus, we can 
clearly observe changes in the skew along the sequence. 
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Fig. 1. AT and GC skew correlation visualization in 2D by BSDT. Top bar shows the 
chromatogram (color scale). Top left: chicken chromosome 8; top right: opossum chromosome 
3; bottom left: mouse chromosome 1; bottom right: human chromosome 14. The lower left 
triangle represents the AT bias, the upper right triangle represents the GC bias. The clear 
correlation of AT and CG skews in chicken is evident as symmetry along the diagonal. 

By visual observation, most BSDTs of chicken chromosomes are very symmetrical 
across the diagonal, meaning that the correlation between the AT skew and CG skew 
is very high for most large chromosomes of chicken at any scale. This visual 
symmetry phenomenon can be quantified as a summary correlation measure as 
follows: 
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Taking 12 pairs of symmetry lines parallel to the diagonal in the square, 

1+×=− knm β  (2) 

1−×=− knm β  (3) 

where β  is the distance between 2 neighboring lines. k=0,1,2,3,...,to 11 in equation 

(2) and k=0,-1,-2,-3, to -11 in equation (3). Since each point pair (n,m) and (m,n) in 

the lines corresponds two base skews 
AT

mnD ,  and 
CG

mnD , , each line pair has a a set 

of paired values for each genome sequence. For the 12 correlation coefficients from 

the 12 paired lines denoted as iC , we define the average iC  as the correlation level 

(CL) of the target sequence: 

∑
=

=
12

1

*_

12

1

i
i

chrspecies CCLβ  (4) 

The species_chr* means for which DNA sequence and β  means in what scale. 

Positive values of CL mean positively correlated AT and CG skews, negative values 
mean negative correlation. 

Interpretation of the images is as follows: 1) The skew level of any segment 
displayed in the BSDT shows strong negative skews as deep blue, changing via 
black color at no skew to deep green for strong positive skews (see color scale in 
Figure 1a). 2) The closer the point to the diagonal, the smaller the sequence it 
represents. 3) The symmetrical color pattern across the diagonal means correlation 
of GC skew and AT skew of that genome area 4) By comparing the color changes 
along the diagonal direction we can observe local deviations in skews along the 
sequence. Note, that in the corners furthest from the diagonal (= largest genomic 
scale) the skew is less (color is often pink or yellow, that is, closer to black portion 
in the middle of the color scale). 

3   Data 

The eukaryotic genomic data was selected to compare main branches of higher 
vertebrates. Species used in this study are shown in Table 2, totaling 87 chromosomes 
and 9,794 Mb of sequence data. 

Table 1. Genomic data analyzed for AT and GC skew correlation 

Organism Latin name Chrom, #  - size (Mb) Data source 
chicken Gallus gallus 32—  984 Mb UCSC(galGal3) 
opossum Monodelphis domestica 10—3420 Mb UCSC(monDom4) 
mouse Mus musculus 21—2470 Mb UCSC(mm6) 
human Homo sapiens 24—2920 Mb UCSC (hg17) 
Total  87—9794 Mb  
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4   Results 

4.1   AT and GC Skew Correlations 

We generated 2D displays of skew correlation (BSDTs) for 87 chromosomes of 4 fully 
sequenced species. Representative samples of visualizations are shown in Figure 1. We 
then calculated the correlation level CL values for 50201052 ，，，，=β  in equations (2) 

and (3). The CL values of all chromosomes from the four species are listed in table 2, 
using 20=β . It is remarkable, that chicken chromosomes have clearly the highest 

symmetry level CL compared with all the other vertebrates. 

Table 2. AT and GC skew correlation level CL of ranked chromosomes of four vertebrates, 
β=20 

Rank Chicken CL. Human CL. Mouse CL Opossum CL  
1 chr8 0.984 chr14 0.887  chrY 0.730  chr1 0.239   
2 chr14 0.98 chr15 0.865  chr1 0.718  chrUn 0.207   
3 chr10 0.98 chr7 0.814  chr12 0.685  chr6 0.050   
4 chr5 0.977 chr3 0.789  chr3 0.669  chr8 -0.023   
5 chr13 0.975 chr12 0.780  chr14 0.632  chr3 -0.251   
6 chr6 0.975 chr16 0.777  chr18 0.610  chr2 -0.335   
7 chr4 0.971 chr20 0.753  chr13 0.602  chr4 -0.381   
8 chr19 0.97 chr11 0.738  chr2 0.584  chr5 -0.403   
9 chr7 0.969 chr5 0.737  chr10 0.575  chr7 -0.445   
10 chr12 0.967 chr8 0.701  chr9 0.554  chrX -0.456   
11 chr11 0.967 chr13 0.698  chr5 0.540     
12 chr20 0.963 chr9 0.687  chr16 0.513     
13 chr3 0.963 chr2 0.683  chrX 0.505     
14 chr9 0.957 chr6 0.675  chr6 0.498     
15 chr24 0.956 chr17 0.658  chr17 0.391     
16 chr1 0.955 chr1 0.658  chr15 0.377     
17 chr18 0.954 chr4 0.649  chr19 0.370     
18 chr15 0.94 chr22 0.590  chr7 0.321     
19 chr23 0.925 chr18 0.544  chr4 0.232     
20 chr22 0.923 chrX 0.519  chr11 0.218     
21 chrZ 0.921 chr10 0.365  chr8 0.181     
22 chr26 0.915 chr21 0.239  chrM -0.030     
23 chr17 0.913 chr19 0.110       
24 chr2 0.906 chrY -0.252       
25 chr21 0.89        
26 chr28 0.804        
27 chr27 0.724        
28 chr25 0.381        
29 chr32 0.247        
30 chr16 -0.2        
31 chrM -0.33        
32 chrW -0.38        

Since the chromosomes listed in Table 2 have quite different size, but they are 
represented in a 2D square with same number of pixels, chromosome size might be 
thought to bias the comparisons. However, we have calculated the CL for many 
parameter values of β  for correlation level in many genomic scales, and consistently 

found that CL for chicken chromosomes were clearly higher than in the other 
vertebrates for all combinations of species, and almost all chromosomes, using  
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parameter combinations 50201052 ，，，，=β  and n for first 25 chromosomes listed in 

Table 2. Thus we conclude that chicken chromosomes have higher skew correlation 
compared to other animals in any scale, based on both visual observation of the BSDT 
images and the quantitative analysis by CL measure. 

One can also compare the chromosomes at the same window scale by a simple visual 
method. For example, if two DNA sequences have length 30Mb and 10Mb, then we can 
compare them by sliding a square 1024/3 in length along diagonal of the BDST of the 
bigger one, with step 1. If the longer sequence has the same skew correlation level CL 
or higher in the smaller window scale, the sliding square should on average will have 
the same CL or higher compared to the smaller one (see Figure 2).  

 

Fig. 2. Sketch map of sliding a smaller square in a bigger BSDT along the diagonal 

It is very interesting that we indeed can find some local symmetry segments in 
other animal’s chromosomes with lower CL. For example, human chromosome 2 has 
some high symmetry local segments found by sliding the square window. Figure 3a is 
the BDST of the human whole chromosome 2 and has CL 0.584. that is much smaller 
than the top ranked chromosomes in Table 2. We enlarged 3 non-overlapping sliding 
square windows at length 1024/3, shown in Figure 3d and we can see some local 
symmetry areas in the chromosome. In certain locations, blue and green color have 
symmetry along the diagonal, indicating local negative correlation of AT and CG 
skews. This would lead to a lower CL of the whole chromosome. Unlike birds, other 
animals show little symmetry in whole genome scale, although many have some 
symmetry locally. 
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Fig. 3. The BSDT of chromosome 2 of human. Top left: whole chromosome, top right, bottom 
left and bottom right: successive non-overlapping 1024/3 sliding windows. The white arrows 
show AT skew and CG skew negatively correlated regions. 

5   Discussion 

In this study, we introduced a new 2D visualization method of BSDT to display and 
quantify correlation of AT and GC skews in the genome, and discovered a strong 
correlation in large-scale in the chicken genome. We predict it is prevalent in other 
bird genomes as well. Further study of the phylogenetic distribution and evolution of 
this skew correlation awaits access to more genomic data from other bird species and 
related taxa.  

We also discovered local skew symmetries in other animals, which also warrant 
further investigation. Such smaller scale local skew correlation regions may be related 
to replication origins at protein coding regions, as shown for human genome (5), or  
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other local features tied to transcription activity along the genome. It will be 
interesting to examine the role and contribution of non-coding and repetitive DNA 
sequences in this skew correlation. Also the relation between isochore structures and 
skew symmetry remains to be explored. 

Chargaff’s second rule is a global rule with many deviations in local genomic 
scales (4). It must have something to do with double-stranded genome organization, 
as single-stranded RNA and DNA genomes do not obey the rule (13). Isochore 
structure may be related to this phenomenon and for such studies the recently 
constructed human chromosome isochore maps (14) should be useful. It seems 
established that isochores are declining in current evolution of mammals (15). 
Webster et al (16) suggest that birds have a history of biased gene conversion, causing 
and maintaining the isochore structure and more increased divergence in GC-rich 
regions compared to mammals. As for other sauropsids, only limited reptile data is 
available, including GC composition in various species measures by analytical 
centrifugation (17). It would be interesting to see how skew correlation is related to 
the variation of GC composition at the same genomic scale. 

The exact biochemical determinants of evolutionary selection pressures causing 
and maintaining the special skew correlations reported in this paper are largely 
unknown, as is their relation to the Chargaff’s second rule and isochores. Some 
possible explanations for the uniqueness of birds are suggested here. Firstly, there 
may be some unique metabolic aspects in birds, compared to both lizards and 
mammals, affecting the nucleotide composition. Metabolic constraints and 
availability of energy in microbes have been shown to affect AT/GC composition 
(18), as well as environmental factors (19).   

Secondly, birds have a higher body temperature and faster metabolism than 
mammals, due to unidirectional airflow in bird lung and more efficient blood 
circulation and maximized ATP production (20). Higher temperature and faster 
metabolism could mean faster mutation rates, affecting biased gene conversion. This 
could be studied by relating body temperature in various birds and other animals to 
skew correlation. 

Thirdly, chicken genome has been reported to be a mosaic of GC and AT rich 
isochores (21), though comparisons to reptiles and mammals are still lacking. 
Isochore structure might affect the biased gene conversion, thus affecting skew 
correlation. 

With more genomic data accumulating from a variety of birds and related taxa we 
expect interesting findings in this area. The new methods of visualization by BSDT 
and skew correlation measure CL and their variations should serve as useful tools in 
this endeavor. 
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Abstract. This work performs an analysis on two, quite different, techniques 
for Quantitative Trait Loci (QTL) Analysis.  Interval Mapping (IM) as 
described by Karl Broman is compared to a Hierarchical Bayesian Model 
(HBM) technique that reduces the problem of QTL analysis down to one of 
model selection.  Simulations were generated for the flowering plant of the 
Arabidopsis thaliana for evaluation of the techniques.  It is shown that the 
HBM technique was much more successful at determining the appropriate 
loci/markers and corresponding chromosomes than the IM technique given a 
single loci.  It was further elucidated through simulation runs that the HBM was 
robust against two loci/markers, whereas IM completely failed. The 
contribution of this work is in the comparison and analysis of the IM method to 
that of the HBM; hence, demonstrating through simulations that the HBM 
technique is superior to that of the IM for the Arabidopsis simulated data. 

Keywords: Quantitative Trait Loci (QTL) Analysis, Arabidopsis, Interval 
Mapping, Hierarchical Bayesian Model. 

1   Introduction 

The commencement of the genomic era has witnessed an increased interest in 
identifying locations on a genome responsible for a quantitative trait, referred to as 
quantitative trait loci (QTL).  Mapping a quantitative trait to a location on a genome is 
made possible through a genetic map, which illustrates the relative distance between 
known markers or genes on an organism’s genome.  Alfred Henry Sturtevant 
constructed the first genetic map in 1913, and the first analysis relating genes to 
quantitative traits was done in 1923 by Sax [1].  Since these initial works and a few 
others, not much else has been done in the area of QTLs until the 1980’s. 
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The last two decades has seen an explosion of algorithms proposed for the 
identification of QTLs.  A few of the more notable initial methods include Lander and 
Botstein [2]; Jensen [3]; Zeng [4]; Wright and Mowers [5]; Kearsey and Hyne [6]; 
Wu and Li [7]; and, Sen and Churchill [8].  In the last decade a technique known as 
interval mapping [9], in which pseudo-markers were placed in the interval between 
two known markers to evaluate the possibility of a QTL in the interval, has dominated 
the research landscape.  Variations on the Interval Mapping (IM) algorithm such as 
Composite Interval Mapping [4, 10] and Multiple Interval Mapping [11] have also 
gained much attention in the 1990’s.  Yet, still other influential methods have been 
proposed to analyze QTLs; for example, generalized estimating equations [2], partial 
least squares [12], and Bayesian approaches [13, 14, 15, 16, 17]. Each method has its 
own advantages and weaknesses; however, all of these approaches assume only one 
observation per genotype.  

A single trait is usually determined by many genes; as a result, many QTLs are 
usually associated with a single trait. The number of QTLs associated with each 
phenotypic trait tells us the genetic makeup and the variation of this trait. For 
instance, a small effect can be determined if there are many QTLs correlated with a 
single trait and a large effect can be determined if there are only a few QTLs 
correlated with a single trait. The information gleamed from the QTL can help us 
better understand the chemical structure of these traits and better understand the 
evolution of these traits over a period of time. Furthermore, QTLs can ultimately 
enable the alteration of the chemical structure of these traits. One potential benefit of 
understanding the QTLs for plants is the ability to alter the chemical structure of a 
plant to make it more tolerant of ultraviolet (UV) radiation, which may help 
agriculturalists deal with the depleting ozone layer; this layer filters much of the UV 
radiation before it can enter the atmosphere and ultimately the terra firma.  

As mentioned above, most QTL methods have been developed mainly for human 
and animal genotypes. Since all humans and animals have unique genetic 
composition, each observation per genotype (or line) consists of a single observation 
value. However, plants are often cloned and their genetic makeup reproduced, 
generating multiple observations per genotype (or line). The clones within each line 
consist of the same marker information on their genetic makeup; therefore the 
question must be asked, Are the methods for human and animal genotypes 
appropriate for plant genotypes? 

Current state-of-the-art algorithms for QTL detection are limited to the use of a 
single value for the quantitative trait per genotype; therefore, plant biologists will take 
the mean or median value of the quantitative trait within each line to perform their 
analysis. Although, plants have the unique capability of being cloned, important 
information, like variability within a line, may be lost due to the suppression of data 
into a single value for methods such as interval mapping.  The hierarchical Bayesian 
model (HBM) proposed in [18] and further elucidated for QTL analysis in [19] over 
comes the limitation of a single value for the quantitative trait.  The following 
sections will detail the development of the hierarchical Bayesian model used for this 
work (section 2 Methods), the simulations that were generated to evaluate the IM 
against HBM (section 3 Simulations), the results (section 4) and conclusions drawn 
(section 5). 
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1.1   Arabidopsis Thaliana 

The Arabidopsis thaliana, which is illustrated in figure 1, is an angiosperm, a dicot 
from the mustard (Brassicaceae) family.  This little plant has become to plant biology 
what Drosophila melanogaster and Caenorhabditis elegans are to animal biology.  
Although this plant has no commercial viability, it has proved to be an ideal organism 
for the study of plant development. 

 

Fig. 1. Arabidopsis thaliana member of the mustard (Brassicaceae) family, which is shown 
here a grow tray 

The main attractions of this plant as a model organism for cellular and molecular 
biology of flowering plants are, short germination to seed maturation (6 weeks); seed 
production is prolific and the plant is easily cultivated; large number of mutant lines 
and genomic resources are available; extensive genetic and physical maps of all 5 
chromosomes are readily available; one of the smallest genomes in the plant kingdom 
with little junk DNA; mutations can be easily generated; and it is self-pollinated so 
recessive mutations become quickly homozygous.  

2   Methods 

Hierarchical models have proven to be invaluable in many instances (e.g. Boone et al. 
[18] and Simmons et al. [20]).  In the case of plant QTL experiments, hierarchical 
models make the most sense and are flexible enough to adequately model the data.  
The response, yij is the numerical value of the quantitative trait for i = 1,…,L and j = 
1,…, ni where L is the number of lines and ni represents the number of replicates 
within each line.  Each yij is assumed to be linearly dependent on the genetic 
composition of the plant, in other words,  

 yij = β0 + β1xi1 +β2xi2+…βMxiM     (1) 
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where 
1 if marker from parent A

0 if marker from parent Bijx
⎧

= ⎨
⎩

  

and M is the number of markers.  Most models for QTL experiments involve similar 
forms of a linear association between the quantitative trait and the markers.  However, 
most QTL models assume that there is only one observation per genotype, or per line, 
and that the variance is the same within each line [2, 20].  The hierarchical model 
does not make this assumption of homogeneity of variance and is able to incorporate 
the replicate information within each line. 

The hierarchical model assumes that each yij is normally distributed with a mean of 
θi and a variance of 2

iσ .  The next level of the hierarchy assumes that the θi’s are 

normally distributed with a mean of β0 + β1xi1 +β2xi2+…βMxiM and a variance of 2τ .  

This model allows different variances within each line ( 2
iσ ) and a variance between 

the lines ( 2τ ).  The Bayesian paradigm is extremely flexible and easy to incorporate 
hierarchical structures evident in these experiments.  The following prior distributions 
will be assumed 

 

 βm ~ N(0,100)     (2) 

 

 τ2 ~ Inverse-χ2 (2)     (3) 
 

 2
iσ  ~ Inverse-χ2 (2).     (4) 

The Inverse-χ2 (2) is a natural choice for the variances, since it has an infinite 
variance (Boone et al. [22]). The prior distribution for the β’s assume that no markers 
have an effect on the quantitative trait, and forces the data to dictate which markers 
are most important with respect to the quantitative trait. 

Combining this information into a hierarchical model creates a full joint posterior 
distribution of the form 
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The Gibbs Sampler, a Markov Chain Monte Carlo technique, can generate samples 
from the full joint posterior distribution in (5) by using the following conditional 
posterior distributions   
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This information can be used to find posterior probabilities and ultimately 
determine which markers are important in controlling the quantitative trait.  For 
example, the posterior probability of interest is the probability of model ηi given the 
data  
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where P(ηi) is the prior probability of model ηi and |Η| is the set of all possible 
models. Assuming no prior information is known about the markers, equal probability 
is assigned to each ηi.  The quantity P(D |ηi)  in equation (10) is calculated by 
 ( | ) ( | , ) ( | )i i i i i iP D P D P dη ω η ω η ω= ∫ ,   (11) 

where ωi is the vector of unknown parameters under model ηi.  This integration is 
computationally intensive, but can be estimated by 
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where ( )j
iω  are samples from the full posterior distribution under model ηi.  Since 

there are many unknown parameters in this model, a large number of samples from 
the posterior are recommended.  In this research, t was chosen to be 100,000 with a 
burn-in period of 2,000.  The posterior probability of the model given the data can be 
used to find the activation probability of a marker or region, P(βj ≠ 0 | D).  The 
activation probability is defined as, 

 ( 0 | ) ( 0 | , ) ( | )j j i iP D P D P Dβ β η η
Η

≠ = ≠∑ .   (13) 

However, to calculate the activation probability for each marker means that 2M 
models need to be fit.  This can become computationally intensive since most genetic 
maps have more than 100 markers (M is generally larger than 100).  Therefore, a 
search strategy is needed.  We define a conditional search strategy that continues to 
break the genome into smaller and smaller regions and retains only those regions of 
importance. 

The search strategy first breaks the genome into chromosome regions.  In this 
instance, there are 2K number of models that need to be evaluated where K is the 
number of chromosomes.  The activation probability for each region is evaluated by  

 ( 0 | ) ( 0 | , ) ( | )j j i iP D P D P Dκ κ η η
Η

≠ = ≠∑ .   (14) 
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Regions with posterior probability larger than 0.5 are regarded as potential QTLs 
and retained in the model. Once all potential regions are identified, those regions 
retained are divided in half. For example, in a hypothetical example with 7 
chromosomes, the search algorithm would first find which chromosomes make a 
significant contribution to the QTL by searching through all 27 = 128 possible models 
and calculating the activation probability for each chromosome.  For this example, the 
following activation probabilities were obtained C1 = 0.01, C2 = 0.03, C3 = 0.67, C4 = 
0.33, C5 = 0.90, C6 = 0.21 and C7 = 0.84. Chromosomes 3, 5 and 7 have activation 
probabilities higher than 0.5 and are kept for further analysis. Dividing these 
chromosomes in half, there are now six regions to explore (i.e. 26 = 64 models).  
These regions are defined as C31, C32, C51, C52, C71 and C72.  The algorithm is rerun 
and activation probabilities for each of these six regions are calculated. Only those 
regions with activation probability higher than 0.5 are retained and then divided in 
half. This algorithm is repeated until the activation probabilities are calculated on 
individual markers.  

3   Simulations 

The dataset that was utilized for the X matrix (165 lines x 38 markers) is from a real 
marker structure, the Bay-0 x Shahdara population created by Oliver Loudet and 
Sylvian Chaillou [23] which is depicted below in Figure 1. 

A genetic map is a map based on the frequencies of recombination between markers 
during crossover of homologous chromosomes. The greater the frequency of 
recombination (segregation) between two genetic markers, the farther apart they are 
assumed to be. Conversely, the higher the frequency of association between the markers, 
the smaller the physical distance between them [24].  Distance on a genetic map is 
measured in centiMorgans (cM) which is a relative distance between two markers. 

 

Fig. 2. The genetic map of the Arabidopsis Thaliana Bay-O by Shahdara 
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The genetic map of the Bay-0 x Shahdara population is made up of five 
chromosomes consisting of approximately 6 to 9 markers each.  Marker values (xi) 
were set to xi = 0, 0.5 or 1. The marker value xi = 0 came from parent A and the 
marker xi = 1 came from parent B, whereas, the marker value xi = 0.5 is a missing or 
unknown value. Ten response values (yij) were simulated per line around 
approximately a 26 unit mean (μ) which depended on the QTL location and the actual 
genotypic trait. Bimodal standard deviations (σ1 and σ2) were created around the 
mean value (μ) for the observations in each line. The response values (yij) for the one 
QTL simulation were drawn from a random normal distribution. The marker values of 
the QTL were simulated as follows, 

  yij = μ + 2*ai *xi+ εij ,   (15) 

where, μ = the underlying true mean and ai = QTL affect, xi = 0, 0.5 or 1 and εij is 
random error noise.  The random error noise εij has standard deviation σ1 or σ2 
depending on a random draw from a Bernoulli with probability of success 0.5. 

In the case of two QTLs, the following equation was used to simulate the QTL 
value, 

 yij = μ + a1*x1i +a2*x2i + εij   (16) 

where, μ = the underlying true mean and a1,a2 = QTL affects and εij is random error 
noise, as defined previously. 

One or two QTLs were arbitrarily placed on or around random markers with two 
different effects as shown in Table 1 and Table 2. The Bay-0 x Shahdara X-matrix 
and the simulated response values were run through the two methods introduced in 
section one to see which one performed better given the different variances created.  

Table 1.  Simulations for one QTL that were used for this work. The chromosome were the 
marker of choice is located (ground truth) given the effect and number of QTL’s.  

Standard Deviations Effects σ1= 2.0, σ2 =4.5 σ1= 4.2, σ2 =9.1 

a = 2 Chrom 3 
M 18 

Chrom 5 
M 36 

a = 12 
Chrom 3 
M 15 

Chrom 2 
M 12 

The two methods being evaluated in this sensitivity study have different criteria 
associated with their respective selection mechanism for QTL markers. The Interval 
Mapping method uses the Logarithm of the Odds (LOD), shown in equation (17), 
such that any loci with a score greater than a threshold value is said to be a potential 
QTL.  From [20] it has been stated that a LOD score of 11 or greater are deemed 
significant; hence a marker selection can be determined. 

max(likelihood assuming no QTLs)
LOD=-2ln

max(likelihood assuming QTL at location)

⎡ ⎤
⎢ ⎥
⎣ ⎦

.                 (17) 
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Table 2. Simulations for two QTLs that were used for this work. The chromosome were the 
marker of choice is located (ground truth) given the effect and number of QTL’s.  

Standard Deviations Effects σ1= 1.5, σ2 =2.5 σ1= 2.0, σ2 =4.5 

a1 = 1  
a2 = 2 

Chrom 1 
M 5 
 
Chrom 4 
M 24 

Chrom 2 
M 11 
 
Chrom 5 
M 36 

a1 = 1  
a2 = 2 

Chrom 2 
M 14 
 
Chrom 3 
M 21 

Chrom 1 
M 8 
 
Chrom 3 
M 18 

a1 = 2  
a2 = 12 

Chrom 1 
M 5 
 
Chrom 4 
M 24 

Chrom 2 
M 11 
 
Chrom 5 
M 36 

HBM as stated above in the Methods section (section 2) uses a conditional 
activation probability to determine loci of interest.  It is further stated that a 
conditional activation probabilities of 0.50 or greater is deemed significant.  Hence, 
probability scores of 0.50 are used to determine the loci of markers. 

4   Results 

The locations of the simulated QTLs illustrated in Tables 1 and 2 were arbitrarily 
chosen for this study.  Small effect sizes (1 and 2) and large effect sizes were chosen 
to study the sensitivity of the methods to the size of the effect.  In a similar fashion, 
larger and smaller variances were also chosen to study the influence of different 
variations. 

Table 3 clearly indicates that the HBM is able to detect the simulated QTLs.  In 
three instances in Table 3 the HBM also detects adjoining markers, which is not 
uncommon in QTL analysis.  Markers that are close together on a genetic map tend to 
be highly correlated, so often more than one marker will be detected in a QTL 
analysis.  Table 3 also indicates that the IM algorithm can detect the approximate 
location of the QTL; however, the IM algorithm tends to choose the general region of 
the QTL by selecting the marker immediately after the simulated QTL. 

Table 4 illustrates the two QTL case where the HBM again is able to detect the 
correct locations of the QTLs and occasionally picks up adjacent markers.  The IM 
algorithm is only able to detect the larges effect size of 12 in the study.  Effect sizes of 
1 and 2 are not detected in the IM algorithm. 
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Table 3. One QTL Summary Table. (1Final conditional activation probability. 2 LOD score.) 

Standard Deviations 
Hierarchical Bayesian Method Interval Mapping Method Effects 
σ1 = 2.0 
σ2 = 4.5 

σ1 = 4.2 
σ2 = 9.1 

σ1 = 2.0 
σ2 = 4.5 

σ1 = 4.2 
σ2 = 9.1 

2 
Chrom 3 
M 18 (1.000)1 
M 19 (0.987)1 

Chrom 5 
M 35 (0.586)1 
M 36 (1.000)1 

Chrom 3 
M 19 (52.49)2 

Chrom 5 
M 37 (17.53)2 

12 
Chrom 2 
M 15 (1.000)1 
 

Chrom 2 
M 11 (0.989)1 
M 12 (1.000)1 

Chrom  3 
M 16 (117.84)2 
Loc 2.5 cM (63.05)2 

Chrom 2 
M 13 (106.39)2 

Table 4. Two QTL Summary Table. (1Final conditional activation probability. 2 LOD score.) 

Standard Deviations 
Hierarchical Bayesian Method Interval Mapping Method Effects 
σ1 = 1.5 
σ2 = 2.5 

σ1 = 2.0 
σ2 = 4.5 

σ1 = 1.5 
σ2 = 2.5 

σ1 = 2.0 
σ2 = 4.5 

1,2 

Chrom 1 
M 5 (1.000)1 
 
Chrom 4 
M  24 (1.000)1 

Chrome 2 
M 11 (0.997)1 
 
Chrom 5 
M 36 (1.000)1 

Chrom 4 
Loc, 17.5 cM 
(21.73)2 

LOD all < 11 

1,2 

Chrom 2 
M14 (0.999)1 
 
Chrom 3 
M 21 (1.000)1 
M 22 (0.543)1 

Chrom 1 
M 8 (0.963)1 
 
Chrom 3 
M18 (1.000)1 
M 19 (0.535)1 

Chrom 3 
Loc, 65 cM (33.94)2 

Chrom 3 
M 19 (16.37)2 

2,12 

Chrom 1 
M5 (1.000)1 
 
Chrom 4 
M 24 (1.000)1 

Chrom 2 
M11 (1.000)1 
 
Chrom 5 
M 36 (1.000)1 

Chrom 4 
M25 (88.08)2 

Chrom 5 
M37 (93.55)2 

5   Conclusions 

Many novel approaches have been developed for QTL analysis over the past 25 years.  
However, most methods assume only one observation per genotype, or equal 
variances within each genotype. Plant biologists have the luxury of cloning plants and 
creating replicates within each line. These replicates provide information about the 
QTL, but also on the variances within each line.  Summarizing the replicates into one 
observation to utilize available software disregards the abundant information provided 
by the replicates. In these simple simulations of allowing the variances to have two 
values, we illustrate the importance of incorporating the different variance structures 
into the analysis. The additional complexity introduced by different variances within 
lines is easy to incorporate by using a Bayesian hierarchical model and is more 
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appropriate in situations such as this.  More extensive simulations to determine power 
and Type I error are needed, but these initial results are promising. 
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Abstract. Theoretical and computational methods for the prediction of protein 
subcellular localization have been proposed and are developing continuously. 
Many representations of protein sequence are proposed but a new problem 
arises: how to organize them together to improve prediction. It is an available 
solution to serialize multiple representations to single bigger one, but is still 
hard to avoid calculation error derived from greatly different feature values and 
causes huge computational burden natively because of high dimensional feature 
vector. We present a novel method based on decision templates(DT) for such 
problems in this paper. First, a protein sequence is represented as three new 
types of feature vectors. Then, the feature vectors are further taken as the inputs 
of individual SVM classifiers respectively. Finally, the outputs of these 
classifiers are aggregated by decision templates. The results demonstrate that 
DT is superior to other methods of subcellular localization prediction.  

Keywords: decision templates, subcellular localization prediction, multi-scale 
energy, moment descriptor, amino acid composition distribution, support vector 
machines. 

1   Introduction 

As one of the most important areas in post-genome era, proteomics aims to 
understand proteins’ potential roles, elucidate their interaction in a cellular context, 
and further make the corresponding functional annotation. Determination of 
subcellular location of proteins is of essence and importance to their functional 
annotation. However, the biological experiment of protein subcellular localization 
will be hard to meet the demands due to both time-consuming and expensive cost. 
Therefore, to bridge this gap, there is a need to develop more effective methods. 

During the last decade, many theoretical and computational methods were 
developed in an attempt to predict subcellular localization of protein. Originally, 
Nakashima and Nishikawa represented protein sequence with amino acid composition 
(AAC) and indicated that intracellular and extracellular proteins are significantly 
different in this representation[1]. The subsequent studies showed that AAC is closely 
related to protein subcellular localizations[2-4]. Although AAC can represent the major 
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information of sequence, it always ignores the sequence-order and structure 
information of protein. Hence two sequences, different in function and localization 
but similar in AAC, may be predicted as the same localization. To represent protein 
sequence better, some improved representations have been proposed[5-13].  

So many representation methods give us lots of choices to predict subcellular 
localization of protein, but also push a new problem out: how to organize them 
together to achieve better prediction than what any single method can do. 

One available solution is to serialize multiple representations to single bigger one, 
in other words, combined feature. In this way, it is proved that the prediction obtained 
can be better[5]. However, there are still two problems need to be solved. First, it is 
hard to avoid calculation error because feature values derived from multiple 
representations are always greatly different. Secondly, the combined feature vector is 
always of high dimension which bring out huge computational burden natively. 
Chou’s pseudo amino acid composition (PseAA) provides a good way to the former 
problem[5,6,14]. However, the latter one is still the obstacle to build the online 
application of subcellular localization prediction which is already the tendency of this 
research area[15]. 

To solve above problems, some methods are presented by performing majority 
vote algorithm to the outputs of several classifiers which use different feature 
representations as inputs respectively. In this paper, we introduce three types of 
feature representation methods, and then use a multiple classifier fusion scheme, 
decision templates (DT), to perform the prediction of protein subcellular localization. 

2   Database 

In this paper, we use several databases which are presented in [5] and [15] 
respectively. These databases vary with the version of SWISS-PROT, the type of 
locations, the count of subcellular localization and total number of sequences. The 
similarities between sequences are all less than 80%. 

Table 1. The database used in this paper 

Database CH01-J[5] CH01-I[5] HO06-P[15] 
SWISS-PROT Release 35.0 Release 35.0 Release 42.0 
Location    
chloroplast(ch) 145 112 449 
cytoplasm(cy) 571 761 1411 
cytoskeleton(cs) 34 19 — 
endoplasmic reticulum (er) 49 106 198 
extracellular (ex) 224 95 843 
Golgi apparatus (go) 25 4 150 
lysosome (ly) 37 31 — 
mitochondria (mi) 84 163 510 
nucleus (nu) 272 418 837 
peroxisome (pe) 27 23 157 
plasma membrane (pm) 699 762 1238 
vacuole (va) 24 — 63 
Total 2191 2494 5856 
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Remarkably, the former database is composed of a training set and a testing set; the 
latter one contains three databases of which many locations and sequences overlap, 
therefore only the plant database are used here as a result of holding the most 
locations. Consequently, there are three databases used in these papers, which are 
shortly denoted by CH01-J, CH01-I, and HO06-P and listed in Table 1. 

3   Representation Methods 

Without loss of generality, we assume that there are N protein sequences in the 
dataset, let kL  be the length of the k th sequence kp , and iα  be the i th element of 20 

natural amino acids represented by English letters A, C, D, E, F, G, H, I, K, L, M, N, 
P, Q, R, S, T, V, W and Y respectively. 

3.1   Multi-scale Energy 

According to amino acid composition, the protein sequence kp  can be characterized 

as a 20-D feature vector: 

1 20, , , , , 1, ,k k k
k iAAC c c c k N⎡ ⎤= =⎣ ⎦L L L , (1) 

where k i
i kc n L= is the normalized occurrence frequency of amino acid iα , and in  is 

the count of iα  appearing in sequence kp . 

However, it is not sufficient to represent a specific protein sequence only based on 
AAC. Consequently, there is a need to improve AAC or develop other representations 
of protein sequence to deal with such case. 

Using discrete wavelet transform (DWT) and Mallat fast algorithm[16], we 
proposed the multi-scale energy (MSE) representation to improve AAC[8]. Each 
protein sequence can be firstly coded into digital signal by mapping all amino acid 
residues of protein sequence to the corresponding numerical value according to one of 
amino acid indices[17]. Here we choose the hydrophilicity index HOPT810101 from 
amino acid index database. Hence, such a coded protein sequence can be treated as a 
digital signal and further processed by DWT.  

According to DWT and Mallat fast algorithm, the fine-scale and large-scale 
information of a protein hydrophilicity signal can be simultaneously investigated by 
projecting the mapped digital signal onto a set of wavelet basis functions with various 
scales. Here, the wavelet basis function used is symlet wavelet. The features extracted 
from the wavelet-based multi-resolution information, can discriminate different types 
of protein signals. Consequently, sequence kp  can be characterized as a (m+1)-D 

feature vector of multi-scale energy(MSE): 

1 , , , , ,k k k k
k j m mMSE d d d a⎡ ⎤= ⎣ ⎦L L . (2) 

Here m  is the coarsest scale of decomposition, k
jd  is the root mean square energy of 

the wavelet detail coefficients in the corresponding j th scale, and k
ma  is the root 
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mean square energy of the wavelet approximation coefficients in the scale m . The 

energy factors k
jd and k

ma  are defined as 

-1
2
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1
[ ( )]

jN
k k
j j

j n

d u n
N =

= ∑ , 
1

2

0

1
[ ( )]

mN
k k
m m

m n

a v n
N

−

=
= ∑ , 1, 2, ,j m= L , (3) 

where jN is the number of the wavelet detail coefficients, mN is the number of the 

wavelet approximation coefficients, ( )k
ju n  is the nth detail coefficient in the 

corresponding jth scale, and ( )k
mv n  is the nth approximation coefficient in the scale 

m . For the protein sequence kp with length kL , m equals ( )( )2log kINT L . 

Obviously, MSE contains the approximation and detail information of protein 
signal which reflect sequence-order effects. In order to get better representation, we 
combine MSE with AAC and construct the following (20+m+1)-D feature vector kx

v
 

to represent sequence kp . 

1 20 1 1[ , , , , , , , , , , ]k k k k k k k T
k i j m mx c c c λ λ λ λ +=v

L L L L , (4) 

where 1, , 1, ,k k k k
j j m md a j mλ λ += = = L . 

3.2   Moment Descriptor 

Considering the order amino acid, we proposed a new feature representation method, 
called moment descriptor (MD)[12]. 

Firstly, instead of using the direct definition of AAC in (1), we calculate k
ic  by 

introducing position indicator ,
k
i jΔ  as follows: 

,
1

1 kL
k k
i i j

k j

c
L =

= Δ∑ , (5) 

,

1 if is present at position in

0 if is NOT present at position in
i kk

i j
i k

j p

j p

α
α

⎧
Δ = ⎨

⎩
. (6) 

Obviously, (5) is the sampled statistical mean (raw moment) of position indicator. 
Hence, we choose it as the first MD of protein sequence. 

Secondly, considering the position of amino acid iα in sequence kp , we define 

another feature for amino acid iα : 

( ),
1

1 kL
k k
i i j

k j

m j
L =

= Δ ⋅∑ . (7) 

where k
im represents mean of position of iα . We choose it as the second MD. 
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Thirdly, the sampled variance k
iv  of position of amino acid iα  in sequence kp  

is considered: 

( )2

,
1

1 kL
k k k
i i j i

k j

v j m
L =

= Δ ⋅ −∑ . (8) 

where k
iv  represents the second-order central moment of position of amino acid 

iα  in sequence kp . We choose it as the third MD of protein sequence. 

Eventually, we get a combined feature vector for sequence kp  by serializing 

above three moment descriptors: 

1 20 1 20 1 20, , , , , , , , , , , , , , , 1, ,
Tk k k k k k k k k

k i i ix c c c m m m v v v k N⎡ ⎤= =⎣ ⎦
v

L L L L L L L . (9) 

3.3   Amino Acid Composition Distribution 

As we know, the tertiary structure of protein is always composed of several 
secondary structure units, such as α -helix or β -sheet. Considering this fact, we 

present a new representation, amino acid composition distribution (AACD) which 
divide a protein sequence kp  equally into multiple segments and then calculate 

AAC of each segment in series[13]. So the sequence kp  can be represented as the 

following formula: 

1,1 1, 1,

,

20,1 20, 20, 20

k k k
m n

k k
n i m

k k k
m n n

c c c

AACD c

c c c
×

⎧ ⎫
⎪ ⎪⎪ ⎪= ⎨ ⎬
⎪ ⎪
⎪ ⎪⎩ ⎭

L L

L L L L

L L

, (10) 

where n is the count of segments, 1, , 20,, , ,
Tk k k

m i m mc c c⎡ ⎤
⎣ ⎦L L is the AAC of the m th 

segment of kp , and ,
k
i mc  is define as: 

, , , 1, , , 1, 20,k k
i m i m kc n t L m n i= ⋅ = =L L , (11) 

where ,
k
i mt  is the count of iα  appearing in the m th segment of sequence kp . 

In order to be the input of classifier, this representation of protein sequence kp  

is turned to a feature vector as the following: 

1,1 1, ,1 , 20,1 20,, , , , , , , , , , , 1, ,
Tk k k k k k

k n i i n nx c c c c c c k N⎡ ⎤= =⎣ ⎦
v

L L L L L L . (12) 
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4   Classification and Assessment 

4.1   Support Vector Machines 

When the representation of protein sequence is set, next step is just to choose a 
classifier to perform the prediction of subcellular localization. Many types of 
classifiers which have been applied to such prediction, such as neural network[2], 
covariant discriminant algorithm[5], fuzzy KNN[18] and support vector 
machines(SVM)[9,10,15].  

In these classifiers, SVM has been more broadly applied to such prediction due to 
its good performance of classification. SVM was originally designed for binary 
classification[19] while such prediction is M-class classification. Usually, we can 
construct M-class SVMs to solve such problem based on the binary class SVM. That 
is an ongoing research issue. Extensive experiments have shown that ‘‘One-Versus-
Rest’’ (OVR)[19], ‘‘One-Versus-One’’ (OVO)[20]and ‘‘Directed Acyclic Graph’’ 
(DAG)[21]are practical[8,12,22,23]. Because of its convenient usage, OVO is used in this 
paper. 

To perform the prediction, the SVM software, LIBSVM, is used, and can be freely 
downloaded from http://www.csie.ntu.edu.tw/~cjlin/libsvm/ for academic research[22]. 
In addition, we do the training only with the RBF kernel in all experiments. 

4.2   Multiple Classifier System and Decision Template 

If we have different feature sets, different training sets, different classification 
methods or different training sessions, then multiple classifier system (MCS) is 
proposed to improve classification or prediction accuracy by combining the outputs of 
a set of classifiers[24,25]. Various combined schemes for MCS can be grouped into 
three basic main categories according to their architecture: serial (cascading), 
hierarchical and parallel architectures[25]. Most combination schemes in the literatures 
belong to the parallel MCS which involves two kinds of aggregated schemes. The one 
is known as selection rule[26] of which clustering and selection, dynamic classifier 
selection with local accuracy are always used. The other is referred to as fusion rule 
which includes lots of related algorithms, for example, majority vote[24].  

If the set of classifiers is fixed, the problem focuses on the aggregated function or 
rule. It is also possible to use a fixed combiner and optimize the set of input 
classifiers. We only consider the former one in this paper. Due to the higher 
efficiency and flexibility, we select parallel MCS and use the fusion rule decision 
templates (DT). DT is non-sensitive to poorly trained individual classifiers, and can 
achieve good and stable performance without strict probabilistic conditions[27]. 

Let nx ∈ℜv
 be a feature vector (a representation of a protein sequence), 

{ }1,..., ,...,j Mω ω ω be the label set of M classes, and { }1,..., ,...,i Le e e be the set of L 

classifiers. We denote the output of the i-th classifier 

as ( ) ( ) ( ) ( ),1 , ,,..., ,...,
T

i i i j i MD x d x d x d x⎡ ⎤= ⎣ ⎦
v v v v

, where ( ),i jd x
v

 is the degree of 

"support" given by classifier ie  to the hypothesis that x
v

 comes from class jω . The 

outputs of L classifiers can be organized in a decision profile (DP) as the matrix [27]: 
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where the components ( ),i jd x
v

 can be regarded as an estimate of the posterior 

probability ( )|i jP xω v
 produced by classifier ie  for class jω  and the given x

v
, 

1, 2,...,i L= , 1, 2,...,j M= . 

Let Z  be the crisp labeled training dataset. The decision template for class jω  

denoted jDT  can be regarded as the expected ( )DP x
v

 for class jω : 

( )1
, 1,

k j

k

j k
j z

z Z

DT DP z j M
N ω∈

∈

= =∑
v
v

v
L . 

(14) 

where n
kz ∈ ℜv

 is a feature vector of the training dataset, jN is the number of samples 

of Z from class jω , and jDT  is an L M×  matrix. 

For a tested feature vector nx ∈ℜv
, we can calculate the squared Euclidean 

distance between ( )DP x
v

 and each jDT  

( )( ) ( ) ( )( )
2

,
1 1

1
, ,

M L

E j k i j
i k

d DP x DT d x dt k i
L c = =

= −
⋅ ∑∑

v v , (15) 

where ( ),jdt k i  is the k, i-th element in decision template jDT . 

Then, we can get the find predicted class label of x
v

 by: 

( ) ( )( )( )* arg max 1 , , 1, ,j E jj x d DP x DT j M= − =v v
L . (16) 

4.3   Prediction of Assessment 

To make a fair and full comparison, jackknife test are used to CH01-J and 
independent test to CH01-I and 5-fold cross validation (5CV) to HO06-P respectively. 

During the process of jackknife test, each protein in training dataset is singled out 
in turn as a test sample, and the remaining are used as training samples. For 
independent test, proteins in training dataset are used as training samples, and those in 
independent test dataset are used as test samples. The quality of independent test 
indicates the ability of generalization of prediction system. To assess the quality of 
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jackknife and independent test, the total prediction accuracy is always used and 
defined as: 

1

1
( )Q p

N ω
ω

Ω

=
= ∑ . (17) 

According to 5CV procedure, the dataset is split randomly and equally into 5 
subsets. In turn, we take each subset as the testing set to evaluate the prediction, and 
use the rest subsets to build classification modal, in other words, to do the training. 
The average and the standard deviation of the accuracies of all evaluations are used to 
indicate the performance of prediction, and are defined respectively as: 

( ) ( )
2

1 1
, 1 , 1, , ,

k k
i ii i

Q Q k S Q Q k i k= == = − − =∑ ∑ L 5k = . (18) 

where iQ  is the accuracy of the i th evaluation and k is the count of cross-validation. 

Besides the total accuracy or average accuracy, the sensitivity ( iSens ), the 

specificity ( iSpec ) and the Matthews correlation coefficient ( iMCC ) of each location 

are also used to assess the wider performance of prediction: 
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(19) 

5   Experiment and Discussion 

Each of protein sequences is firstly represented as three types of feature vectors which 
are corresponding to MSE, MD, and AACD respectively. Then, the proposed feature 
representations are taken as the inputs of three multi-class SVM classifiers 
respectively. Finally, the prediction is performed by fusing the outputs of these 
individual SVM classifiers with decision templates rule. 

5.1   Comparison with the Former Methods 

In order to validate the effectiveness of decision templates and make fair 
comparisons, we perform DT on all selected databases, use jackknife test to CH01-J, 
independent test to CH01-I, and 5CV test to HO06-P respectively. The results are 
shown in Table 2 and Table 3 respectively. 

We can see that DT wins the best accuracies and achieves the lowest standard 
deviations. To dataset CH01-J, the accuracy achieved by DT is 83.75%, and 10.72%, 
16.07% and 10.18% higher than those achieved by [5,6,14], respectively. To dataset 
CH01-I, the accuracy achieved by DT is 88.41%, and 7.54%, 14.55% and 8.62% 
higher than those achieved by [5,6,14], respectively. To dataset HO06-P, the accuracy  
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Table 2. The results of the comparison with the former methods for database Chou 

CH01-J CH01-I 
Methods 

Jackknife(%) Independent(%) 
Chou[5] 73.03 80.87 
Pan[6] 67.68 73.86 
Xiao[14] 73.57 79.79 
Our(DT) 83.75 88.41 

Table 3. The results of the comparison with the former methods for database HO06-P by 5CV 

PORST[28] MultiLoc[15] DT 
Loc Sens Spec MCC Sens Spec MCC Sens Spec MCC 

ch 0.49 0.58 0.50 0.88 0.85 0.85 0.85 0.89 0.86 
cy 0.40 0.70 0.42 0.68 0.85 0.70 0.87 0.75 0.73 
er 0.21 0.11 0.11 0.72 0.54 0.61 0.61 0.86 0.71 
ex 0.74 0.70 0.67 0.68 0.81 0.70 0.86 0.86 0.83 
go 0.02 0.13 0.04 0.75 0.41 0.54 0.71 0.82 0.76 
mi 0.65 0.53 0.54 0.85 0.81 0.81 0.74 0.77 0.73 
nu 0.59 0.60 0.53 0.82 0.75 0.75 0.80 0.82 0.78 
pe 0.47 0.16 0.24 0.71 0.34 0.47 0.39 0.79 0.55 
pm 0.81 0.75 0.72 0.74 0.89 0.77 0.93 0.90 0.89 
va 0.13 0.06 0.07 0.70 0.20 0.36 0.48 0.75 0.59 
Q(%) 57.50 74.60 ± 0.80 82.68 ± 0.38 

achieved by DT is 82.68%, and 25.18% and 8.08% higher than those achieved by [28] 
and [15], respectively. In addition, DT achieves the lowest standard deviation. 

5.2   The Performance Analysis of DT 

In order to analyze the performance of DT, we make a contrast with the “single best” 
classifier and the “oracle”. The “single best” classifier is referred to as the member 
classifier which achieves the best accuracy. The “oracle” is such procedure which 
assign the correct class label to x

v
 as long as one individual classifier produces the 

correct class label of x
v [27]. The result of “oracle” can reflect the maximum bound of 

the classification ability of MCS. The results of Chou-J, Chou-I and HO06-P are 
listed in Table 4, 5, and 6 respectively. 

Firstly, these results show that DT fusion rule can achieve better total accuracy and 
lower standard deviation than the “single best” classifier. Secondly, the sensitivity, 
the specificity and MCC of each location are always improved in most cases. 
Especially, the performances of prediction on those locations which have minority 
protein sequences are improved greatly. Finally, the results of “oracle” show that the 
fusion of MSE, MD and AACD can represent protein sequence better than any single 
feature representation because the maximum bound of the classification ability of 
MCS for three dataset are 89.14%, 93.42 and 90.86%, respectively. 

Furthermore, we also compare DT with other popular aggregated rules which are 
majority vote (MV) [24] and dynamic classifier selection with local accuracy 
(DCS_LA) [26]. The results are shown in Table 7. 
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Table 4. The result of multi-classifier fusion for the Chou-J dataset 

Single Best Decision Template Oracle 
Loc 

Sens Spec MCC Sens Spec MCC Sens 
ch 0.79 0.82 0.79 0.75 0.88 0.80 0.86 
cy 0.91 0.76 0.76 0.93 0.77 0.78 0.97 
cs 0.44 0.94 0.64 0.47 1.00 0.68 0.56 
er 0.39 0.83 0.56 0.41 0.95 0.62 0.55 
ex 0.76 0.77 0.74 0.75 0.80 0.74 0.86 
go 0.20 0.83 0.40 0.28 0.78 0.46 0.40 
ly 0.54 0.80 0.65 0.59 0.73 0.65 0.76 
mi 0.32 0.71 0.46 0.43 0.82 0.58 0.48 
nu 0.88 0.72 0.76 0.88 0.74 0.78 0.93 
pe 0.26 1.00 0.51 0.26 0.44 0.33 0.26 
pm 0.94 0.94 0.91 0.96 0.96 0.94 0.98 
va 0.29 1.00 0.54 0.29 0.88 0.50 0.46 
Q(%) 82.15 83.75 89.14 

Table 5. The result of multi-classifier fusion for the Chou-I dataset 

Single Best Decision Template Oracle 
Loc 

Sens Spec MCC Sens Spec MCC Sens 
ch 0.67 0.78 0.71 0.74  0.81  0.77  0.86  
cy 0.91 0.87 0.84 0.93  0.91  0.89  0.96  
cs 1.00 0.95 0.97 1.00  0.95  0.97  1.00  
er 0.89 0.96 0.92 0.93  0.98  0.95  0.94  
ex 0.88 0.74 0.80 0.86  0.81  0.83  1.00  
go 0.50 1.00 0.71 0.50  1.00  0.71  0.50  
ly 0.94 0.97 0.95 1.00  0.97  0.98  1.00  
mi 0.18 0.85 0.37 0.29  0.89  0.49  0.53  
nu 0.84 0.85 0.82 0.87  0.87  0.84  0.94  
pe 0.39 1.00 0.62 0.61  0.78  0.69  0.65  
pm 0.98 0.84 0.86 0.99  0.87  0.89  0.99  
va - - - - - - - 
Q(%) 85.49 88.41 93.42 

Table 6. The result of multi-classifier fusion for the HO06-P dataset 

Single Best Decision Template Oracle 
Loc 

Sens Spec MCC Sens Spec MCC Sens 
ch 0.84 0.83 0.82 0.85 0.89 0.86 0.90 
cy 0.81 0.71 0.66 0.87 0.75 0.73 0.94 
er 0.55 0.81 0.65 0.61 0.86 0.71 0.69 
ex 0.84 0.79 0.77 0.86 0.86 0.83 0.95 
go 0.57 0.83 0.68 0.71 0.82 0.76 0.76 
mi 0.72 0.75 0.71 0.74 0.77 0.73 0.93 
nu 0.75 0.79 0.72 0.80 0.82 0.78 0.89 
pe 0.32 0.85 0.51 0.39 0.79 0.55 0.45 
pm 0.87 0.84 0.81 0.93 0.90 0.89 0.97 
va 0.40 0.81 0.56 0.48 0.75 0.59 0.48 
Q(%) 78.09 ± 1.01 82.68 ± 0.38 90.86 
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Table 7. The results of the comparison with other aggregated rules 

CH01-J CH01-I HO06-P 
Methods 

Jackknife(%) Independent(%) 5CV(%) 
MV 83.02  88.05 80.28 ± 0.53 
DCS_LA (k=10) 83.20  88.01 80.67 ± 0.49 
DT 83.75 88.41 82.68 ± 0.38 

These results also show that DT fusion rule can achieve better total accuracy and 
lower standard deviation than both MV and DCS_LA rules.  

As above described, DT is an effective and robust method to subcellular 
localization prediction. 

6   Conclusion 

In this paper, we have presented three types of representation methods, MSE, MD and 
AACD, and then performed prediction of protein subcellular localization by using the 
parallel MCS. Instead of serializing the proposed representations of protein sequence 
to single bigger one, the presented method integrates them together by DT fusion rule. 
DT aggregates the outputs of three individual SVM classifiers which take those 
representations as the inputs respectively. Compared with other prediction methods, 
other aggregated rules and the single best classifier, the results show that DT achieves 
better prediction of subcellular localization and is more effective and robust to 
subcellular localization prediction. In addition, DT also avoids huge computational 
burden increased by high dimension derived from the serialization of multiple 
representations. Consequently, DT can be applied to develop the application of 
subcellular localization prediction. 
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Abstract. The schemata theorem, on which the working of Genetic Algorithm 
(GA) is based in its current form, has a fallacious selection procedure and 
incomplete crossover operation. In this paper, generalization of the schemata 
theorem has been provided by correcting and removing these limitations. The 
analysis shows that similarity growth within GA population is inherent due to 
its stochastic nature. While the stochastic property helps in GA’s convergence. 
The similarity growth is responsible for stalling and becomes more prevalent 
for hard optimization problem like protein structure prediction (PSP). While it 
is very essential that GA should explore the vast and complicated search 
landscape, in reality, it is often stuck in local minima. This paper shows that, 
removal of members of population having certain percentage of similarity 
would keep GA perform better, balancing and maintaining convergence 
property intact as well as avoids stalling.  

Keywords: Schemata theorem, twin removal, protein structure prediction, 
similarity in population, hard optimization problem. 

1   Introduction 

Protein structure prediction (PSP) using lattice model is regarded as a very hard 
optimization problem. This is because the prediction using lattice model is proven to 
be NP-complete [1],[2] and the number of possible valid (i.e., self avoiding walk) 
conformation is astronomical [3], [4]. We have chosen Genetic Algorithm (GA) as a 
vehicle for providing solution to the protein structure prediction (PSP) problem for its 
performance in various domains [5], [6], [7], [8], [9], [10], [11], [12], [13], [14]. 
Crossover, regarded as the key operation of GA, is also being adapted by almost all 
other promising search approaches [15],[16],[5],[17],[12]. It is considered as the 
potential operation that can build a promising conformation by cutting and joining the 
potential sub-parts of more than one conformation. In some cases, the GA population 
strategy is also being adapted by other approaches. While GA performance is 
generally very effective it can sometimes stall [18] in a hard optimization problem 
[19] like PSP with the protein sequences having length above, say 30 [12]. Thus, like 
other promising approaches, GA too cannot ensure the final generation to contain an 
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optimal solution. Even, effective [18],[20] elitism can become ineffectual for PSP 
problem. This problem is so difficult that unlike other type of problems, a mere 
application of any of the known approaches will not provide improved results. 
Therefore, in this paper, we present the generalization of the schemata theorem by 
incorporating twin removal which is necessary to overcome the limitations of the GA 
and show the impact of this generalization upon GA operation in order to secure more 
accurate and efficient PSP solutions. To achieve this, in the initial stage we revisit the 
idea of identical chromosomes (twins) in the population and relax the concept to 
embrace similar (strongly-correlated) chromosomes. This helps to generalize the 
schemata theorem as well as to find the percentage of similarity within the population 
that can keep in GA optimum search condition.    

2   Twins in GA Population 

The schemata theorem as the basis of a GA, has had its critics as evidenced in [21], 
[22]. The mathematical derivations in relation to the schemata theorem supports that 
the schemata with above average fitness values would most likely be sustained as the 
generations proceed and consequentially the similarity [23], [24], [25],[26],[27] grows 
within the population. This means that although we can set the crossover rate to a 
desired value, in many cases, the operation generates no variation due to the 
similarity. Earlier, it was observed [28] that due to the ‘stochastic error’ associated 
with GA’s genetic operators, the genetic algorithm tends to converge to a single 
solution. This can raise two different issues. First, there are certain applications where 
search interest is not for one but several solutions [29], such as to find Pareto front on 
a problem using multi-objective optimization application. Second, convergence to a 
single solution means the search becomes stagnant which can be due to the population 
losing its diversity. This phenomena is termed as ‘genetic drift’ [29], [30] due to 
which, in hard optimization problem such as PSP, the search space is extremely 
convoluted. It can cause the aforementioned stall effect which could be devastating. 
The searches can get stuck in local minima without exploring much of the vast space.  

The existence of twins and the requirement for their removal in a GA is not new. 
This matter appears as diversity issue in literature as a result of growth of the twins. 
The growth of twins was considered [26] in evaluating the cost of duplicate or 
identical chromosomes which suggested starting each chromosome with different 
patterns to avoid twins. However, if twin growth is inherent in a GA search, then the 
effect of initialization using different patterns will quickly decline after starting. In 
[23], [31], it was advocated that if a population comprised all unique members, tests 
need to be continually applied to ensure that identical chromosomes did not breed. If 
chromosome similarity does not grow, then the GA may not converge because the 
search process becomes random rather than stochastic. While if it does grow, and then 
finding a non-similar chromosome to mate with, clearly becomes rare because of the 
inevitable occurrence of more twins, and the increasingly costly exercise of finding 
dissimilar chromosomes. On the other hand, it was also advocated [28] to allow 
individuals to reproduce if they are very closely similar. But, we have shown [32] that 
crossover between identical chromosome is a mutation operation which can turn a 
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stochastic search approach indirectly into a random search, specially for complex 
problem and therefore the solution of the problem rarely converges [11],[12].  

Aforementioned issues related to twin removal provide motivation for the 
investigations presented in this paper. The need for twin removal was originally 
highlighted in [25] which emphasized that duplicates chromosomes (twins) reduce 
diversity and ultimately lead to poorer performance. The study was confined solely 
however, to the detection and removal of identical chromosomes that were unique to 
each other, with no consideration being given to the removal and impact of similar 
chromosome or strongly correlated chromosomes. To mitigate the limitations caused 
by the stall condition, PSP using a GA has principally been confined to developing 
models based around special operators [33],[34] statistical approaches [5],[33],[35] 
and special treatment techniques such as cooling [11],[12] constraints and 
hybridization [10],[14],[15],[36] with the consequence that resulting GA-based 
solutions are both model and sequence dependent but are never generic. Therefore, 
generic improvement can be coupled for further improvement. 

 
 

(a)                 (b)                  (c)

Fig. 1. (a) Conformation of sequence phhpphhpphh in 2D HP model [37] is shown by solid 
line. Any two hydrophobic residues being topological neighbor (TN) is indicated by dotted 
line. Fitness = -(TN Count) = -4, here. Three different arrows indicating Left (0), Right (1) and 
Forward (2) can be used to for chromosome encoding and it forms 001122110 in this case. (b) 
Pie chart of population having fitness 8, 6, 6, 6, 6, 6, 4 and 1. Legend: Fitness, Fitness % (with 
respect to the sum of the fitness values) (c) An example schema, H ]11[ ∗  at bits 2 to 4, 

contained in chromosomes 3, 4, 5 and 7 of population size zPop  = 7 at generation t.  

A chromosome correlation factor (CCF) defines the degree of similarity existing 
between chromosomes. For similarity measurement between two individuals in the 
genotype as described in [29], we also measure it by counting the number of bits 
along each chromosome that are equal in the two individuals being compared. For 
chromosome presented [32] in the 2D HP (used in this paper) for PSP problem, three 
bit code 0, 1 and 2 are used for presenting three moves (see Fig. 1 (a) description). 

It will be shown that by removing chromosomes having a similarity value greater 
than or equal to CCF during the search process enables the GA to continue seeking 
potential PSP solutions and ultimately provide superior results. The improved PSP 
performance of the algorithm based upon the generalized schemata theorem is 
analyzed upon accepted benchmark PSP sequences [34],[38]. Randomly-selected 
single point crossover and mutation operations are used in this paper as well as in the 
literature [11],[12] for PSP. This is because, as the solution becomes phenotypically 
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compact it can produce more collisions [14],[16], if multi-point crossovers and 
mutations were involved which would leading to increasing collisions that produce 
non-self-avoiding walks within the conformation. 

3   Preliminaries of Schemata Theorem 

While this paper considers only the Simple GA (SGA), without any loss of generality, 
the theoretical framework developed is applicable to all GA variants [39]. Firstly, the 

initial population is generated, where the thi  chromosome iC  is selected based on the 

fitness if  with probability )/( ff i , where f  is the average fitness of the population. 

Parents then produce offspring by crossover at a rate cp  for a population of size 

zPop , with the generated offspring chosen with a selection probability )/( ff i  and a 

mutation rate mp . Usually, a small percentage of elite (high fitness) chromosomes are 

then copied to the next generation to retain potential solutions, with any remaining 
chromosomes unaffected by crossover, mutation or elitism moved to the next 
generation. Assume, an alphabet of cardinality |A| (defined as countb  in this paper) is 

used and hence the cardinality of schema is (|A|+1) including the don’t-care which is 
normally applied to cover the unrestricted locus of the schema. The length of the 
schema )(Hδ  is the distance between the position of the first and last non don’t-care 
characters, which actually indicates the number of possible crossover positions. For a 
chromosome length n , there are )1)1(( −+ nA  possible schema, excluding the 

combination comprising only don’t cares, so a population of zPop  chromosomes 

evaluates up to ))1)1)(((( −+ n
z APop  schema, which provides implicit parallelism within 

the GA search. The order of schema )(Ho  is the number of non don’t-care characters, 
which governs the impact that any mutation has upon the schema. The number of 
occurrences of schema H  in a population zPop  at time t  (which equals the number 

of generations) is given by ),( tHm . Throughout this paper, twins refer to pairs of 

chromosomes which are, with respect to their conformations, either i) identical, so 
CCF = 1, or ii) correlated with CCF ≥ r, where r is the minimum admissible level of 
similarity defined for a population. Also, the term overall similarity is used to indicate 
the average of all CCF values of any chromosome with respect to all the other 
chromosomes in the population.   

4   Limitations of the Schemata Theorem 

In the following sections, limitations of the working principles of GA, i.e., schemata 
theorem [40], has been explored in the context of twin removal. 

Selection: For a chromosome kC  having fitness kf , the probability of kC  being 

selected by roulette wheel selection, is given by (1): 

∑
=

=
zPop

i

ikk ffp
1

 (1) 
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The proportionate selection probability of the first chromosome (see Fig. 1 (b)) 
will be )43/8(1 =p , and similarly )43/6(2 =p , …, )43/1(8 =p . This is fallacious 

however, as from the pie-chart in Fig. 1 (b), it is clear that assuming chromosomes 
having the same fitness are identical, the fitness 6 occupies 68% in total, so the 
probability of a rolling marble randomly selecting a segment having fitness 6 is 

expressed as 43/30
6

2
2

==∑
=i

ieffective pp . The effective selection probabilities for 1C  ( 2C or 

3C or 4C or 5C  or )6C , 7C  and 8C  are thus 43/8 , 43/30 , 43/4  and 43/1  respectively. 

Effectively, any of the fitness 6 occupies 70% of the pie-chart instead of 14%. Now 
consider an arbitrary schema H ]11[ ∗  from bit position 2 to 4 as shown in Fig. 1 (c). 
The number of occurrences of such schema at time t is, ),( tHm = 4. The expected 
number of occurrences at time )1( +t  is )1,( +tHm  which depends on the fitness of the 
chromosomes containing the schema H such as ,3C  4C , 5C  and 7C .  Hence, ),( tHf  

= ( 3f  + 4f + 5f + 7f ) / 4.  The average fitness f  is now defined as: 

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
= ∑

=
z

zPop

i

i Popff
1

 (2) 

So if ),( tHf > f , then the number of occurrences of schema H in the next 

generation is likely to increase by )),(( ftHf . Thus, the expected number of 

occurrences of schema H  at time )1( +t  can be expressed as: 

f

tHf
tHmtHm

),(
),()1,( =+  (3) 

where, ),( tHf  is the average fitness of chromosomes containing schema H . 

Crossover: The schemata theorem computes the probable occurrences of a particular 
schema H  in the next generation, with the proviso that the longer the schema length, 
the greater probability that the H will be disrupted by either a crossover or mutation 
operation. For a chromosome of length n  there are )1( −n  possible crossover 
positions. Therefore the disruption probability is ))1()(( −nHδ  with the 
complementary existence probability being ))1()((1( −− nHδ , so in general the lower 
bound of the existence probability ep  having a crossover probability cp  is:  

⎟
⎠

⎞
⎜
⎝

⎛
−

−≥
1

)(
1

n

H
pp ce

δ  (4) 

The derivation of (4) comes from the fact that if a crossover point lies within the 
region of schema H, then the schema does not remain intact in the offspring, though 
this is not always the case. Section 5, examines all the various possible scenarios: 

Mutation: The mutation operation is able to disrupt any schema.  With a mutation 
probability mp , the bit disruption probability of a bit or character changing is )1( mp− , 

so for the schema H having order )(Ho , the existence probability of H is: 
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)()1( Ho
me pp −=  (5) 

For very small values of mp ,  

))(1( Hopp me −≈  (6) 

Schemata Theorem: The number of occurrences of schema H in (3) can be expressed 
using (4) and (6) as:  

⎟
⎠

⎞
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⎝

⎛ −
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),()1,( Hop

n

H
p

f

tHf
tHmtHm mc

δ
 (7) 

which was the formal mathematical representation of the schemata theorem. But, as 
(4) is incomplete then so also is (7). While it is readily apparent that (7) supports the 
growth of similarity within a population, it fails to reflect certain anomalies within the 
original schemata theorem that can impact significantly upon GA operations, as the 
growth in twins and their potential deleterious effect in complex landscape 
applications such as PSP are considered.  

5   Generalization of the Schemata Theorem  

To analyse the effect of growing similarity in a population, the following sections 
directly address the particular limitations highlighted in this Section by firstly 
generalizing the selection process, resolving the issue of the crossover component 
 

       
(a) (b) (c) (d) 

Fig. 2. (a) Schema H ]11[ ∗  produced in offspring even when both parents do not have that 

schema. (b) The offspring always contain schema H ]11[ ∗  irrespective of the crossover 
position when both the parents have the particular schema. (c) One of the parents contains 
schema H ]11[ ∗  and the crossover positions lies outside the schema region. (d) One of the 

parents contains schema H ]11[ ∗  and the crossover positions is inside the schema region. 
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contributing in equation (7) and then integrating the solutions into a generalized 
schemata theorem framework. 

Selection: The scenario under consideration is that the number of highly fitted 
chromosome will become larger as they are increasingly selected for crossover and 
mutation in each generation. The selection procedure will always favor those similar 
chromosomes that are higher in number in the population, so if kw  is the number of 

such similar chromosomes having fitness kf , it will have a lower bound of unity and 

compared with (1), the effective selection now becomes: 

⎟⎟
⎟

⎠

⎞

⎜⎜
⎜

⎝

⎛
= ∑

=

zPop

i

ikkk ffwp
1

 (8) 

which is a generalized representation of the original [40] selection procedure with 

kw = 1. This is fully supported by the comparative examples in Fig. 1 (b), where the 

selection process anomaly highlighted in Section 4, mandates an appropriate twin 
removal strategy be implemented in order to ensure that as kw  tend to 1, the core 

schemata theory is upheld. 

Crossover: The crossover operation however, may in certain cases not be disruptive 
[24], which can be interpreted as providing an Accrued Benefit (AB) because the 
schema of interest H is preserved rather than disrupted, which is not reflected by (4). 
Three AB scenarios are identified: 

i) Accrued Benefit1:  Neither Parent Contains a Particular Schema  
Consider the scenario illustrated in Fig. 2(a) of the crossover between two parents that 
do not contain schema H, though H may be expected to be created in the offspring. As 
neither of the parents contain schema H the crossover must occur within the schema 
region to create such an offspring, so the resulting AB can be expressed as in (9). 
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The square parenthesis term is the selection probability of those parents that do not 
contain schema H , with ∑ ),( tHf  being the aggregated fitness values of those 

chromosomes containing H, so the selection probability using (8) of these particular 

chromosomes is ⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
∑ ∑

=

zPop

i

iftHf
1

),( . The second term in parenthesis represents the 

probability of the crossover point existing within region H, where it is intuitively 
reasonable to assume both parents contain some part of schema H close to the 
crossover point, and this is given by probability Δ . To estimate Δ , assume a single 
crossover point divides schema H into 1H  and 2H , that is the schema is actually a 

concatenation of sub-schema so, 

21 HHH •=  and ( ) ( ) ( ) ( ))()2()1( Ho
count

HoHo
count bb −+− ==Δ  (10) 
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since )()()( 21 HoHoHo += . In the example in Fig. 2 (a) where the crossover occurs 
between positions 2 and 3, the schema ]11[ ∗H  is divided into ]1[1H  and ]1[2 ∗H , where 

1)( 1 =Ho  and 1)( 2 =Ho . As }1,0{=A  then, countb = 2 and 11 2.2 −−=Δ = 0.25. An 

important point in (10) is, for a fixed )(Hδ , Δ  directly depends upon chromosomal 
encoding and proportional to countb .  

ii) Accrued Benefit2:  Both the Parents Contain a Particular Schema  
If both the parents contain schema H as shown in Fig. 2 (b), then H will never be lost 
by crossover irrespective of the crossover position. So,  

2
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i
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and since the generation continues, this benefit increases due to increments in the 
similarity, which will assist in the growth of twins.  

iii) Accrued Benefit3:  Only One Parent Contains the Schema  
In this case, two options are feasible when one parent contains schema H and the 
other does not.  

(a) Crossover Point is Located Outside the Schema Region 
Since the crossover point does not lie within the schema region (Fig. 2 (c)), then: 
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where the third term in parenthesis indicates the probability that the crossover point is 
not located within the schema length and region. 

(b) Crossover Point Lies Within the Schema Region 
The crossover point now lies within the schema region (Fig. 2(d)) and it is further 
assumed that the crossover point divides the schema H into 1H  and 2H  for single 

crossover position, so H = 1H • 2H  and:  
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where, ( ) ( )( ) { })()( 21 )()(1)( Ho
count

Ho
count bbnH −− ⊕−= δθ  (14) 

where ⊕  is the ‘Exclusive OR’ operation, while θ represents the probability of the 
formation of schema H from parents. The first bracketed term in (14) is actually the 
probability of the crossover point occurring within the schema region, while the 
second term is the probability that part of schema H will come from each parent, so H 
resides exclusively in one of the offspring. The composite AB3 for the case where only 
one parent contains the schema now becomes: 

ba ABABAB 333 +=  (15) 
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Combining the three Accrued Benefit from (9), (11) and (15), the existence probability 

ep  of a schema due to crossover occurring at a rate cp  can be expressed as:   

( )321 ABABABpp ce ++=  (16) 

The Generalized Schemata Theorem: The equations delineated in the previous two 
sections covering chromosome selection and crossover, are now formally embedded 
into a generalized schemata theorem framework. With a crossover 
probability 0.1<cp , those chromosomes unaffected by crossover occur at )1( cp− . So 

the original schemata theorem in (7) can be rewritten using (10) as in (17):   
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Now, (17) is a generalized representation of how the GA functions, such that in the 
case where cp =1.0, 1AB = 0, 2AB = 0, bAB3 = 0 and all chromosome selection 

probabilities are ignored (the first two terms in (17) then it reduces to the classical 
schemata theorem. Interestingly (17) supports the nonlinear fast growth of the 
surviving (also referred to as favorable) schema and with the incorporation of the 
appropriate selection procedure and various crossover scenarios, (17) clearly reveals 
the obvious expansion of twins in the population. The implications of this growth and 
the increasing likelihood of converging prematurely into the stall condition are now 
considered. 

Impact of Generalization: The inexorable growth of identical and also progressively 
more highly-correlated twins as manifest in (17) can lead to the premature 
convergence or stall [18],[41] in the search process, a situation exacerbated by 
crossover creating even more twins and the impact of the mutation becoming 
increasingly ineffectual. These two issues are now respectively considered in the 
context of the new generalized framework. 

(a) Premature Convergence or Stall Condition: The reproduction probability of 
twins (r ≤  CCF ≤ 1) can be expressed using (8) as: 

( )2),( kkk pCCP =  (18) 

So, the number of twins that are going to be in the next generation can be written as: 

( ) czkkk pPopCCPtCCount ),()1,( =+  (19) 

Now consider the case where the number of similar chromosomes becomes close to 

the population so zk Popw ≈  and ∑
=

≈
zPop

i

ikk ffw
1

in (8), so using (18) we get:  

1),( ≈kk CCP  (20) 

which is the stall or premature convergence condition. (19) shows that nearly all 
offspring generated throughout the population will be similar and go forward to the 
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next generation with the result that there will be no variation in subsequent 
generations. It is entirely reasonable therefore to surmise that as the effective 
crossover rate 0≈cp , strategies that facilitate efficient removal of both identical and 

highly correlated twins will improve the GA performance, a premise that is fully 
corroborated in the experimental results Section 6.  

(b) Ineffective Mutation: The growth of correlated twins inevitably weakens the 
impact of mutation, which despite introducing random variations and thereby 
different schemas, will quickly disappear in the midst of the common schema of 
so many correlated chromosomes in the population such that when zk Popw → , 

the chromosome selected for mutation )( mutatedC  is very likely to be similar (high 

CCF value) to the majority of the population. By considering the mutation 
position, if the conformational change differs with respect to kC , then two 

principal scenarios arise: i) After mutation, mutatedC  has a lower fitness ( mutatedf ) 

than average, so it is less likely to be selected, and thus will not be in the next 
generation. ii) After mutation, mutatedC  has a higher fitness than average, but is 

not similar to highly populated chromosomes, and so while kmutated ff > , as 

zk Popw →  the effect due to (8) becomes kkmutated fwf << , so the chances of 

mutatedC  being selected for reproduction in the next generation are lower and it is  

likely the fitter mutatedC  will die away, so leading to an effective mutation rate of 

0≈mp . While one possible approach to overcoming these issues is to use elitism 

[23], [42] to preserve a small proportion (5% to 10%) of elite chromosomes 
through the generations, this can convert the GA into a random rather than 
stochastic search process, with convergence never guaranteed. A better strategy is 
to remove both identical and highly correlated chromosomes to not only improve 
the performance of the GA but also avoid premature convergence.  

6   Simulation and Experimental Results 

Simulations were undertaken with (TR-r) and without (WT) the twin removal strategy 
implemented in the population. For twin removal (TR-r), it is performed after the 
crossover and mutation operations, for a range of CCF settings from r = 1.0 (identical 
chromosomes only) to r = 0.2 (the widest chromosome similarity 0.2 ≤ CCF ≤ 1.0) in 
steps of 0.1 (e.g., TR-60 refers to the removal of all chromosome twins having an 
admissible similarity value of 0.6 (60%) or above). A knock out system was adopted 
based on the superior fitness value in a Correlated Twin Removal (CTR) algorithm 
(see Algorithm I), where the chromosome with the lower fitness was removed. CTR 
uses the minimum admissible correlation value r when comparing chromosome pairs 
for conformational similarity (Line 4), and if twins are identified, the one with the 
lower fitness is removed (Lines 5 to7). After the removal, the gap is filled by 
randomly generated chromosomes, which for simplicity are not crosschecked for 
further twins. The GA parameters [26], [44] for experiments were set as zPop = 200, 

cp = 0.8, mp = 0.05 with elite rate = 0.05. WT (without twin removal) runs where 
same as in  [12] but without cooling and TR-100 is the same approach as in [25]. PSP 
with complex landscape takes longer time to converge. For this reason a maximum of  
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Table 1. Run results of 5 iterations of PSP for HP sequence length 50; maximum generation 
= 6000 and minimum fitness = -21. Sequence: H2(PH)3PH4PH(P3H)2P4H(P3H)2PH4P(HP)3H2, 
[38].  

WT TR-100 TR-90 TR-80 TR-70 TR-60 TR-50 TR-40 
TR-
30 

TR-
20 

-17 -18 -21 (287) -21 (1244) -21 (992) -21 (4671) -20 -20 -17 -17 
-19 -21 (2776) -21 (5209) -21 (2423) -21 (1721) -21 (5568) -20 -19 -17 -16 
-18 -20 -20 -21 (488) -21 (611) -21 (1668) -19 -18 -17 -17 
-18 -18 -21 (1711) -21 (928) -21 (1696) -20 -20 -17 -18 -16 
-19 -20 -20 -21 (345) -21 (295) -20 -20 -19 -18 -17 

 Data format: Maximum |fitness| (Generation number). 

Table 2. Average run results of 5 iterations of PDB sequences after conversion into HP 
sequence; maximum generation = 6000 

PDB ID Length WT TR-100 TR-90 TR-80 TR-70 TR-60 TR-50 

1PJF 46 -22 -24.6 -24.7 -25 -24.5 -24.5 -24 
1AAF 55 -13.5 -13.6 -15 -14.5 -14.4 -14.3 -14 
2PTL 78 -21 -22 -24.6 -24.9 24.8 -24.7 24.4 
1GH1 90 -22.5 -26 -29 -29.7 -29.3 -28.5 -28 
2GG1 102 -28.4 -31.8 -35 35.5 -34.3 -34.3 -34 
2CQO 119 -37.5 -41 -44 -44.5 -44 -44 -40 

      Source: PDB sequences [43].  

6000 generations was allocated for these particular series of experiments. PSP 
sequences [34], [38] shown in Table 1 and Table 2 for the 2D HP model [37]. Unlike 
Table 2, in Table 1, if during the iterations this optimal value was not reached, the 
maximum value achieved within generations is displayed. Fig. 3 shows the 
Generation vs. Overall similarity plot. In Fig. 3, it is shown that for the WT run, the 
overall similarity reached ≈80% very rapidly (around the 50th generation) from an  
 

Algorithm-I: Correlated Twin Removal (CTR)  
Input: Population size= zPop , Chromosome (C) 
length = n , Minimum admissible correlation = r, 
where, rCCF ≥  
Output: Population without twins of size zPop≤  
Assumption: RetSimilarity (i, j) returns % of 
similarity between C(i) and C(j), where .ji ≠  
1 FOR i = 1 to )1( −zPop DO  
2  { IF  C(i).MarkDeleted = False THEN 
3    FOR j = i+1 to zPop  DO  
4     { IF RetSimilarity(i, j) ≥  r%  THEN 
5      { IF ).FitnessC().FitnessC( ji < THEN        
6             {Swap (C(i), C(j)) } 
7              C(j).MarkDeleted = True } }} 
8            }} 

 

Fig. 1. Generation vs. Overall Similarity 
(%) plot for PSP of length 50 
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initial value of ≈35%, before stabilizing at ≈90% similarity after the 150th generation. 
This clearly supports (17) in that without any twin removal policy, the overall 
population quickly becomes strongly correlated and diversity is lost. The rapid 
nonlinear growth up to the 50th generation is also supported by AB1 and AB2 in (9) and 
(11) respectively, with AB2 being the dominant component in the overall similarity, 
because each crossover is more successful in generating twins similar to their parents 
regardless of the crossover position, and also the biased selection procedure identified 
in (8) is embedded in AB2. In the 5 separate iterations (Table 1) WT never reached the 
putative ground value and its maximum fitness stalled, generally before the 250th run, 
though the simulation ran for the entire 6000 generations. This is a direct consequence 
of twins with a higher fitness appearing in the population, thereby slowing the 
convergence over time as the population becomes less diverse. The overall 
dissimilarity or diversity in the chromosomes remained around 10%, which was 
insufficient to maintain a search capability, and so it became trapped due to premature 
convergence. It must be emphasized that with such a high number of generations the 
effect of mutation is negligible even if elitism is applied, as highlighted in Section 5. 
The elite population is clearly not deriving any benefit from the mutation operation. It 
is also clear that TR-80 displays the best performance for correlated twins as the 
population maintains the most favorable balance between the overall similarity 
(chromosome correlation) so keeping the search stochastic to aid convergence, and 
upholding diversity by supporting the growth of dissimilar, but competent 
chromosomes. The generalized selection procedure delineated in Section 5 supports 
these newly created chromosomes as well as existing correlated chromosomes by 
ensuring the entire selection procedure is less biased.   

7   Conclusion 

The ease of Genetic Algorithm (GA) implementations has made them a popular 
solution for many optimization problems, with the expectation that they can be 
effectively and accurately applied to even complex optimization problems such ab 
initio protein structure prediction (PSP). This neglects however, the crucial role of the 
growth of similarity and chromosome twins has upon the population, which can lead 
to premature convergence. The twin problem can impair its performance ultimately 
leading to premature convergence or the stall condition. We have highlighted the 
fallacies within the selection procedure and shown the ‘accrued benefit’ from the 
crossover operation. A generalized schemata theorem has been proposed which 
highlights the need of twin removal and generalization of the schemata theorem for 
consistent GA performance. The definition of twins has been relaxed to not only 
embrace duplicate chromosomes, but also to take cognizance of strongly-correlated 
chromosomes. It has been observed [27], that while even in relatively simple 
landscapes, failure to remove twins can lead a GA frequently getting trapped in earlier 
generations. This problem has been overcome within the generalized framework 
presented in this paper, with chromosome correlation factor (CCF) setting to 0.8, 
affording the best performance. 
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Abstract. Prediction of protein structural classes for low homology proteins is a 
challenging research task in bioinformatics. A dual-layer fuzzy support vector 
machine (FSVM) network approach is proposed to predict protein structural 
classes. A protein sample can be represented by nine representation feature 
vectors: pair couple amino acid (210-D) and eight pseudo amino acid 
composition vectoers (PseAAC). Eight physicochemical properties of amino 
acids extracted from AAIndex databank are used to calculate low frequencies of 
power spectrum density of sequence-order correlation in protein sequence. In the 
first layer of FSVM network, nine FSVM classifiers are established, which are 
trained by different protein feature vectors, respectively. The outputs of the first 
layer are reclassified by FSVM classifier in 2nd layer of the network. The 
performance of proposed method is validated by low homology (average 25%) 
dataset covering 1673 proteins. The promising results indicate that the new 
method may become a useful tool for predicting not only the structural 
classification of proteins but also their other attributes. 

1   Introduction 

In structural classification of proteins databank (SCOP) [1-3], proteins are classified 
into seven structural classes: all-α, all-β, α+β, α/β, multi-domain, small protein, and 
peptide. More than 80% proteins are deposited into the former four classes. Many 
efforts were focused on the four structural classes, ie., all-α, all-β, α+β, and α/β. 

Numerous prediction methods for protein structural classes have been proposed 
based on the primary amino acid sequence [4-15], since the work of Klein and Delisi 
[4]. During the twenty years, the performance of these methods are increasing with the 
combination of new pattern recognize algorithms and effective protein sequence 
representation. Perfect accuracy rates (about 95%) have been achieved in some 
prediction methods. However, these methods were often tested on small datasets, and 
characterized by different homology of sequences. Kurgan and Homaeian [22] 
indicated that sequence homology in dataset have a significant impact on the predictive 
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accuracy. The best achieved prediction accuracy for low homology datasets is about 
57%. Wang and Yuan [17] have stated that the prediction method should aim only at 
proteins with lower 30% homology. So, it is crucial to develop the prediction methods 
or algorithms for structural classes of protein with lower homology.  

Several studies have testified that the performance of ensemble machine learning 
approaches is superior to individual learning algorithm [7, 18-21]. Recently, the 
methods of ensembles have been used in this area. Kedarisetti et al. [16] established an 
ensembles method with heterogeneous classifiers validating on the datasets of varying 
homology. Chen et al. [7] developed support vector machine fusion network algorithm.  

Compared with amino acid composition frequently used in prediction methods of 
protein structural classes, pseudo amino acid composition (PseAAC) as introduced by 
Chou [23] can incorporate more information and remarkable enhance prediction 
performance in various attribute of protein. In this study, a sample of proteins is 
represented by nine kinds of feature vectors, including pair couple amino acid 
composition (PcAA) (210-D) and eight PseAAC feature vector. Eight physicochemical 
properties extracted from AAIndex database [24] are used to calculate sequence-order 
correlation that introduced by Chou [25]. Low frequencies of power spectrum density 
of different sequence-order effect are used to construct PseAAC. A dual-layer fuzzy 
support vector machine (FSVM) network is used as prediction engine. The low 
homology dataset 25PDB, constructed by Kurgan et al. [22], is applied to verify the 
new method. Promising results obtained on self-consistent and jackknife 
cross-validating test methods show that it is effective and practical. 

2   Methods  

2.1   Protein Sequence Representation 

Pair-coupled amino acid composition (PcAA) attempts to extract the information of 
local order of amino acids in sequence. This concept has been used in protein secondary 
structure content prediction [7, 26, 27] and other attributes of protein prediction [25]. 
The PcAA is formulated as follows: 
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where, )(ACf  is the sum of AC pair occurrence frequency and CA pair occurrence 

frequency in protein sequence. Thus, the pair-couple AA is a 210-D feature vector.  

],...,,[ 210211 xxxS =
→

 (2) 

where, )( ..., ),( ),( 21021 YYfxACfxAAfx === . The 210-D (dimensional) vector is 

normalized to meet the condition that the sum is 1. 
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Compared with conventional protein composition (20-D), the concept of PseAAC as 
originally introduced by Chou [23], which is defined in a D-)(20 λ+  features space, 

will contain much more sequence-order information. A protein sample can be 
represented by D-)(20 λ+  vectors, where the λ is the number of additional properties 

of sequence. 
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where, the fi is the normalized occurrence frequency of the 20 amino acid in the protein, 
that is amino acid composition (AA), and the Pi is the additional properties of protein 
sequence. w is weight factor of additional characteristics. In this study, the properties of 
protein sequence are the low frequencies of power spectrum density of sequence-order 
effect that introduced by Chou [25]. Protein sequence with N residues can be written as 

N21 RRRR …= . Protein sequence order effect can be reflected through Eq. (5). It is 

actually the same as Eq. (2) of  Chou [25]. 
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where, 
miiJ +,

 is the correlation factor of residue i  and mi + . m is the distance of two 

residues have correlation in sequence. In this study, 
miiJ +,

 is defined as the product of 

physicochemical properties of two residues, see Eq. (6), which is actually the same as 
Eq. (3) of Chou[25]. 

)()(, miiii RhRhJ ++ =λ  (6) 

Before substituting the properties into Eq. (6), they are normalized according to the 
Eq. (7) 
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In Eq. (7), )20,...,2,1( )(0 =iRh i  are the original physicochemical properties of 20 

amino acids. 0h  denotes that the average property values of 20 amino acids. 

)( 0hSD presents the standard deviation. 

We use standard function ‘PWELCH’ in Matlab 7.0 environment to calculate power 
spectral density of the sequence-order effect. Based on the theory of digital signal 
processing, the high-frequency components are more noisies, and hence only the 
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low-frequency components are more important. Similarly, low frequencies of Fourier 
transform of protein sequence-order correlation have been used in prediction of 
membrane protein types [28, 29]. In our previous work [30], low frequencies of energy 
spectrum density of protein sequence-order correlation are used to construct PseAAC. 
This is just like the case of protein internal motions where the low-frequency 
components are functionally more important [31, 32].  

In some prior works, hydrophobicity scale of amino acid was usually used to 
calculate sequence-order effect [7, 28-30, 33-35]. Except for hydrophobicity, some 
other physicochemical properties of amino acids are also important in the fold process, 
such as volume, polarity, average accessible surface area, and so on. Here, eight 
physicochemical properties extracted from AAIndex database [24] are used to compute 
the sequence-order correlation of protein sequence through Eq. (6) and (7), 
respectively. The physicochemical properties are listed in Table 1. Eight PseAAC 

vectors are obtained and are named as ),...,,(iS i 932 =
→

.  

Table 1. The eight physicochemical properties used in this work 

No AA Index Description 
1 PRAM900101 Hydrophobicity 
2 COSI940101 Electron-ion interaction potential values 
3 RADA880108 Mean polarity 
4 PONJ960101 Average volumes of residues 
5 KUHL950101 Hydrophilicity scale 
6 JANJ790102 Transfer free energy 
7 JANJ780101 Average accessible surface area  
8 FAUJ880103 Normalized van der Waals volume  

2.2   Fuzzy Support Vector Machine 
 

Support vector machine is a typical binary-class classifier based on the statistic learning 
theory[36]. The task of protein structural classes’ prediction is a four classes 
classification problem. There are many multi-classes SVMs methods to solve the 
problem, such as one against one, one against others, DAG, etc. However, there are 
some unclassifiable points still existing in these multi-class SVMs methods. FSVM 
algorithm as introduced by Abe [37] has capability to solve unclassifiable points 
effectively.  

Compared with conventional SVM algorithm, membership function is defined in 
FSVM algorithm. When solving k classes classification task, 2/)1( −kk  SVM 

classifiers have to be established with one against one method. Toward to the SVM 
classifier between class i  and class j , the decision function of input vector x  is  

ijijij bxwD +=  (8) 

where ijw  is the m-D vector, ijb  is a scalar, and 
jiij DD −=  
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For the input vector x  , we assemble  
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For optimal separating hyperplane )(  0 jiDij ≠= , the membership function ijm  is 

defined as below: 
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We define the class i  membership function of x  using the minimum operator: 
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The shape of the membership function is a truncated polyhedral pyramid. An unknown 
protein sequence is classified into the class with maximum membership value.  

)(maxarg
,...,1

xmi
ni=

 (13) 

In this study, six binary-class SVMs have been developed through the method of one 
against one for solving protein structural classes prediction (four classes).  
LS-SVMLab1.5 toolbox [38] in MatLab environment is selected as binary-class SVM 
classifier which is capable of searching the fittest parameters in SVM automatically. 
The Radial Basis Function (RBF) kernel is used in SVM. The membership function is 
calculated according to the Eqs (8)-(12). The output of each FSVM classifier in the first 
layer is not a rigid class label but a 4-D vector. The vector indicates that the 
membership values of protein sample belong to four strucutral classes. 

2.3   FSVM Network 
 

The SVM fusion uses the FSVM classifier to reclassify the outputs from all 
sub-classifiers. The protein sample is predicted by FSVM 1 to FSVM 8, and the output  
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Fig. 1. The work procedure of FSVM network for prediction of protein structural classes 
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of the thk −  FSVM ( 91 ≤≤ k ) is represented as 4-D vector. Then the input feature 
vector is defined as ],...,,[ 921 VVVV =  to the FSVM fusion classifier for final decision. 

The process of the new predictive method is illustrated in Fig. 1. 

2.4   Dataset and Measure Methods 
 

The dataset constructed by Kurgan and Homaeian [22] is used to validate the 
performance of the new method, which includes proteins scanned with high resolution 
and with low on average 25% homology, named as 25PDB. The dataset contains 1673 
proteins classified into four structural classes: 443 all-α, 443 all-β, 346 α/β, and 441 
α+β.  

Three indexes are applied to evaluate the prediction accuracy, that is, sensitivity 
(Sn), specificity (Sp), and Mathew’s correlation coefficient (MCC).  

FNTP

TP
Sn +

=  (14) 

FPTP

TP
S p +

=  (15) 

2/1)])()()([( FPTNFNTNFPTPFNTP

FNFPTNTP
MCC

++++
×−×=  (16) 

where, TP (true positives) is the protein number of right prediction in a structure class, 
FN (false negatives) is the protein number of wrong prediction in a structure class, and 
FP (false positives) is the number of the proteins in other classes to be predicted in this 
class. TN (true negatives) is the number of proteins observed in other classes that are 
not predicted in this class. Sn represents the accuracy, and Sp represents the reliability in 
procedure of prediction. The MCC is a single parameter characterizing the matching 
extent between the observed and predicted structural classes. Self-consistency and 
jackknife test methods are used to test the performance of the new approach. The 
jackknife test is thought the most rigorous and objective one [see [39] for a 
comprehensive review in this regard], and hence has been used by more and more 
investigators in examining the power of various prediction methods. 

3   Results and Discussion 

In the first layer of the FSVM network, nine FSVM classifiers trained by different 
representation methods of protein are established. The three indexes values of each 
FSVM classier are tested under self-consistency and jackknife cross-validating test 
methods. The number of addition characteristics λ  and factor parameter w  in Eq. (4) 
are important in determining the performance of PseAAC. Different parameters },{ wλ  

in Eq. (4) are tested, and the PseAAC feature vector is input into FSVM classifier. The 
parameters },{ wλ are determined when the accuracy of jackknife test method is the 

highest. The jackknife test results of nine FSVM classifier trained by different PseAAC 
feature vectors are listed in Table 2. The highest accuracy is 55.9%, and the lowest is  
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Table 2. Performance of each FSVM classifier 

Representation 
1S
r

 2S
r

 3S
r

 4S
r

 5S
r

 6S
r

 7S
r

 8S
r

 9S
r

 

λ  - 11 11 7 9 15 11 20 3 
w  - 0.15 0.05 0.02 0.1 0.1 0.1 0.15 0.2 
Accuracy (%) 32.7 53.2 55.6 53.4 47.1 55.9 50.6 43.9 53.4 

 
32.7%. The outputs of all FSVM classifiers are combined into a vector, and used as 
input of the FSVM classifier in the second layer of the network.  

The prediction results of four structural classes on self-consistency and jackknife 
test methods are listed in Table 3. The three indexes are calculated respectively. The 
overall accuracy of self-consistency is 91.87%, and that of jackknife test is 62.9%. 
Class all-β achieves the highest accuracy (79.9%) in four structural classes, and that of 
class all-α is more than 70%. However, accuracy of class α/β is 36.7%, and that of class 
α+β is 56%. The Sp value of class all-α is 53.9%. It demonstrate that some proteins in 
other structural class are incorrect classified into class all-α. According to the concept 
of Levitt and Chothia [30], it is true that the class α+β and α/β are more complex than 
class all-α and all-β. It might be the reason to explain the phenomenon that accuracies 
of class all-α and class all-β are higher than that of class α+β and class α/β.  

Table 3. Results on self-consistency and jackknife test methods 

Self-consistency test  Jackknife test  Structural classes 
Sn Sp MCC Sn Sp MCC 

all-α 95.7% 85.3% 0.86 73.1% 53.9% 0.59 
all-β 87.8% 95.3% 0.88 79.9% 75.5% 0.53 
α/β 87.6% 94.1% 0.88 36.7% 52.0% 0.32 
α+β 95.4% 94.4% 0.93 56.0% 68.8% 0.41 
Total 1537/1673=91.87% 1052/1673=62.9% 

 
The results of proposed method are compared with that of others using the same 

dataset, 25PDB. The accuracy rates of self-consistency and jackknife test methods 
together with the protein representation are deposited in Table 4. In same measure 
method and validation dataset, proposed method obtains 4.2% and 3% improvement on 
jackknife test when compared with the results of Logistic regression method [22] and 
StackingC ensemble [16], respectively. Meanwhile, the highest accuracy is achieved on 
self-consistency test method compared with other two methods. StackingC ensemble 
algorithm uses four heterogeneous classifiers. Protein sequence is initially represented 
using comprehensive set of 122 features which is reduced to 34 features through 
application of several feature selection algorithms [16]. The proposed method use 
different protein representation and same classifier. FSVM classifier has capability to 
resolve unclassifiable region effectively. FSVM is a strong classifier with excellent 
classification performance. It is widely accepted that ensemble method can enhance 
classification performance than single classifier [31]. Multiple FSVM classifiers are 
combined into FSVM network where various physicochemical properties of amino  
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Table 4. Comparison with other prediction methods on same dataset  

Accuracy rates (%) Classification algorithm Representation 
Self-consistency Jackknife 

Logistic regression[22] 66 feature 62.2 57.1 
StackingC ensemble[16] 34 feature 87.6 59.9 
This paper Multi-feature 91.87 62.9 

acid are taken into account. The promising prediction results illuminate that the FSVM 
network incorporating various physicochemical properties of amino acid is effective 
and practical. It might become potential tool for prediction of protein structural classes 
and other attributes of protein.  

4   Conclusions 

A dual-layer FSVM network is established to predict protein structural classes. Protein 
sample is represented by nine kinds of feature vectors including pair-couple amino acid 
composition (210-D) and eight PseAAC vectors. Eight physicochemical properties 
extracted from AAIndex databank are used to calculate sequence-order correlation in 
protein sequence. Low-frequencies of power spectrum density of different 
sequence-order correlations are used to construct PseAAC vectors. In the first layer of 
FSVM network, nine FSVM classifiers are obtained which are trained by different 
feature representation methods, respectively. The low homology dataset (average about 
25% homology) is applied to verify the proposed method. The results of jackknife test 
in different structural classes illuminate that accuracies of class all-α and class all-β are 
higher than class α+β and class α/β. The phenomenon meets the truth of more 
complexity existing in class α+β and class α/β. Compared with other two methods 
tested on same dataset, the proposed methods obtain the highest accuracy. Promising 
results show the new method is effective and practical. It might become potential tool 
for protein structural class and other attribute of proteins.  
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Abstract. The right-handed single-stranded ß-helix proteins are characterized 
as virulence factors, allergens, toxins that are threat to human health. 
Identification of these proteins from amino acid sequence is of great importance 
as these proteins are potential targets for anti-bacterial and fungal agents. In this 
paper, support vector machine (SVM) has been used to predict the presence of 
ß-helix fold in protein sequences using dipeptide composition. An input vector 
of 400 dimensions for dipeptide compositions is used to search for the presence 
of putative rungs or coils, the conserved secondary structure, found in ß-helix 
proteins. An average accuracy of 89.2% with Matthew’s correlation coefficient 
of 0.75 is obtained in a 5-fold cross-validation technique. In addition, a PSSM 
was also used to score the query sequence of proteins identified as ß-helices by 
SVM. The method recognizes right-handed ß-helices with 100% sensitivity and 
99.6% specificity on test set of known protein structures. 

Keywords: ß-helix fold, ß-sheet stacking, pectate lyase, fold recognition, 
secondary structure, Support Vector Machines, SVM, PSSM. 

1   Introduction 

The right-handed single-stranded parallel ß-helices [RßH] are perfect examples of 
protein fold that display high three-dimensional structural similarity in spite of low 
sequence homologies across the families [1]. These proteins display diverse functions 
ranging from the enzymatic activities to specific structural roles [2,3]. The 
characteristic feature of these proteins is the presence of a coiled polypeptide 
backbone having almost same circular arrangement of β-sheet structure elements in 
space [1,4,5]. The backbone alternates between ß-strands and turns with the ß-sheets 
running perpendicular to the axis of protein molecule as shown in Figure 1. As a 
result of this progressive coiling of backbone, the buried hydrophobic cores of ß-helix 
domains is extended, rather than globular, and is characterized by the distinctive 
stacking of side chains that occur at equivalent position in successive coils called 
rungs or turns. A comparative analysis of different known ß-helices has revealed 
strong positional preference for specific amino acid residues towards the interior of 
parallel ß-helices [6,7]. The ß-helix fold lacks an obvious sequence repeats, although 
presence of some sequence patterns has been reported across the super-families [3,8]. 
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In recent past, a shift from classical fold recognition approach to machine learning 
has been observed. For example, Leslie et al [9], have developed a sequence 
similarity based kernel for protein fold classification. Cheng et al [10], present a good 
overview of these fold recognition methods. A number of attempts have been made to 
predict the ß-helix fold across the family of known structure. Heffron et al [3] 
developed a sequence profile based on pectate lyase family under SCOP classification 
[11], however, the method could only predict few proteins from pectate lyase and 
pectin lyase families as RßH proteins. Other general fold prediction methods like PSI-
BLAST [12] and HMMer [13], fail to identify sequences across the RßH fold [1,14]. 
BetaWrap, which depends mainly on ß-strand interactions, shows some success in 
predicting correct fold across the families in the RßH fold. However, the method 
when tested on Swiss-Prot & TrEmBL [15] predicts a number of LRR, LβH and other 
structurally related proteins as right-handed ß-helix proteins. Immunoglobulin-like ß-
sandwiches, TIM beta/alpha barrels, the FAD-NAD(P)-binding domain, acid 
proteases, the subtilisin-like fold and various beta-propeller motifs also appear as 
false positives [1]. Although these protein classes bear less structural homology with 
ß-helix proteins, many of these contain amphiphatic ß-sheets that are highly favored 
by BetaWrap algorithm. Recently, threading has emerged as a very successful method 
for the prediction of protein folds and structure across the parallel ß-helix fold [16]. 

In this paper, a systematic attempt has been made to achieve high prediction 
accuracy for ß-helix fold from proteins sequences. A SVM module, SVM-BetaPred, 
is developed based on dipeptide compositions (e.g. ala–ala, ala–leu, val–ser) of 
known ß-helix proteins to correctly identify rungs or coils in protein sequence. These 
rungs are the characteristic feature of ß-helix proteins, each displaying a conserved 
B2-T2-B3 pattern. The initial screening indicates that the prediction accuracy of the 
dipeptide composition based SVM module is superior to the amino acid 
 

 

Fig. 1. Ribbon diagram of right-handed single-stranded ß-helix protein (1plu) and schematic 
representation of a single rung or coil [1] 
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composition and tripeptide composition based modules. In addition, a position 
specific scoring matrix (PSSM) is constructed using multiple sequence alignments of 
known ß-helix proteins in SCOP database. This PSSM is used to calculate a log odds 
score for each putative rung identified by the dipeptide SVM module. The predicted 
rungs are wrapped into a ß-helix fold using a number of rules learned from known ß-
helices. Finally, a summed score of all the putative rungs identified in a protein is 
used as a threshold cut off to predict the ß-helix proteins. The method performs at par 
with some of the state-of-art methods for ß-helix fold prediction. 

2   Materials and Methods 

2.1   Training and Testing Data Set 

All positive and negative datasets for training and testing SVM modules are derived 
from ß-helix database that consists of right-handed single-stranded proteins in SCOP 
1.69 database. The RßH fold consists of seven superfamilies, however, insect anti-
freeze proteins (AFPs) are not considered in this study, as their sequence and structure 
patterns do not represent an ideal ß-helix fold. The method, however, successfully 
predicts AFPs as ß-helix proteins. The ß-helix database is represented by 28 unique 
sequences. The SCOP structures are used to annotate the rungs in all proteins. The 
positive data set consists of 253 rungs of length nine amino acids that are derived 
from the known ß-helices. The negative data set consists of 261 loop regions of length 
nine derived from the known ß-helix database. The SVM module is trained with 
various window size that range from 9 to 15. 

2.2   Evaluation Data Set 

The negative ß-helix protein dataset, PDB-minus, is composed of 5049 non-β-helical 
proteins sequences with no sequences having homology more than 33% is used. This 
dataset can be downloaded from the following website: http://cubic.bioc.columbia.edu/ 
eva/res/unique_list.html. All known ß-helix proteins were removed for this dataset. 

2.3   Prediction Data Set 

Potential new ß-helices are identified by SVM-BetaPred from the UniProtKB/Swiss-
Prot Release 51.2 of 28-Nov-2006 with 243975 sequence entries. This database is 
filtered to eliminate sequence with more than 40% sequence homology. The resulting 
dataset, SW40 dataset, contains 67,879 sequences. Incremental redundancy filtering is 
accomplished using the CD-HIT program [17]. All sequences of length less than 100 
amino acids are eliminated from SW40 dataset, as ideal ß-helix proteins cannot be 
less than 100 amino acids in length. 

2.4   Support Vector Machine 

Support Vector Machines [SVM] are universal approximators based on statistical and 
optimization theory [18,19]. A Support Vector Machine (SVM) performs 
classification by constructing a N-dimensional hyperplane that optimally separates the 
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data into two categories. SVMs have emerged as a high performance tool to solve 
classification problems. A number of problems in computational biology are 
classification problems and SVM can be applied to these problems effectively due to 
its ability to handle noise, large dataset and large input spaces [18,19]. Vapnik et al 
[20] have described SVM in details. In the current studies, SVMlight is used to 
predict putative rungs in a protein sequence. This software is freely downloadable 
from http://svmlight.joachims.org. SVMlight is an implementation of Vapnik's 
Support Vector Machine [21] for the problem of pattern recognition, regression and 
learning a ranking function. The software enables the users to define a number of 
parameters and also allows a choice of inbuilt kernel function, including linear, RBF 
and Polynomial. 

We have developed a dipeptide composition based binary classifier to handle the 
rung prediction problem. The problem of right-handed β-helix fold prediction can be 
considered as a classification problem. The main aim is to predict the presence of 
rungs in a given protein sequence. In this classification problem a rung can be 
considered as an object x

r
, which is a part of protein amino acids sequence.  A class 

+1 can be assigned to this object if the center of x
r

 lies inside a rung or –1 otherwise. 

2.5   SVM Features 

Amino acid, dipeptide and tripeptide frequency are used to train RBF kernels at 
default parameters, the accuracies are 72.1%, 89.3% and 78.9% respectively. These 
frequencies are obtained from the positive rungs and negative loop regions discussed 
above. The frequencies are obtained using the following equation: 

Total number of k mer
Frequency of k mer

Total number of all possible k mers

−
− =

−
 (1) 

where k =1, 2 and 3 which give a fixed length pattern of 20, 20x20 and 20x20x20 
respectively. SVM accuracy was determined to be highest for dipeptide frequency 
thus all further training and predictions were restricted to dipeptide frequency. Some 
of the important dipeptides reported are NV, SG, VT, TI, IT, NI, TV, GA, GG, DV, 
NS, VI. 

2.6   Kernel and Parameters 

The selection of the kernel function parameters is an important step for SVM training 
and testing. All types of kernels i.e. RBF, Polynomial, Sigmoid and Linear were 
tested, and RBF kernel was identified to have the best performance for rung 
prediction. A number of parameters need to be determined to generate optimal results, 
the most important of these are the regularization parameter C and γ for RBF kernel. 
The prediction accuracy of various parameter values is shown in Table 1. The 
dipeptide based SVM modules with RBF kernel, C = 18 and γ = 900 is used for 
training. 
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Table 1. Prediction accuracy comparison for different parameters for RBF kernel function 

SVM Model Parameters Accuracy (%) 
1 C = default, γ = default 89.93 
2 C = 0.1, γ = 1000 96.51 
3 C = 1, γ = 1000 97.83 
4 C = 10, γ = 1000 98.49 
5 C = 18, γ = 900 98.82 
6 C = 24, γ = 900 98.13 

2.7   SVM Input 

Increasing the window size can provide more local sequence information. The 
window size w is defined as the residue numbers involved in the local sequence 
windows centered on fifth residue of a rung of length 9, i.e. w = 9, 10, 11,12, 13,14 
and 15 in this study. Different local window sizes are used to build the SVM models 
in order to find one, which could lead to the best performance. The prediction 
accuracy is shown in Table 2. As expected, the overall prediction accuracy Q2 [22] 
increases with the enlarging window size and attain its peak at 13. As window size 
increases so does the background noise while smaller window size results in less 
useful information. Accordingly, the optimal window size is fixed to 13 for further 
analysis in this study. The rungs are extended both upstream and downstream to 
obtain different window size.  

Table 2. Predictive performance of SVM based on single sequence inputs of different local 
window sizes 

Window 
Size 

Prediction accuracy (%) 

 Sensitivity Specificity Q2 MCC 
9 52.8 94.8 81.7 0.54 

10 52.8 95.6 82.2 0.56 
11 54.7 96.5 83.4 0.60 
12 62.2 98.3 86.9 0.69 
13 64.2 100.0 88.7 0.74 
14 60.3 99.1 86.9 0.70 
15 60.3 97.4 85.8 0.66 

2.8   SVM Output 

The output from SVM light is in form of real number, a positive value denotes a rung 
while a negative value denotes a loop region. 

2.9   Performance Evaluation 

To evaluate the prediction performance of the SVM module, a 5-fold cross-validation 
method is used. The dataset were randomly divided into five groups, with each group 



 SVM-BetaPred: Prediction of Right-Handed ß-Helix Fold from Protein Sequence 113 

containing roughly equal numbers of proteins. Each group was singled out in turns as 
the testing dataset, while the remaining proteins in other groups were used as the 
training dataset. Four different measurements have been used to measure the 
prediction performance of SVM module [22], these are: 

TP
sensitivity

TP FN
=

+
 (2) 

where, TP is the number of true positives and FN is the number of false negatives or 
under-predictions. 

TN
specificity

TN FP
=

+
 (3) 

where, TN is the number of true negatives, and FP is the number of false positives or 
over-predictions. 

The overall prediction accuracy Q2 is given by 

2

TP TN
Q

TP TN FP FN

+=
+ + +

 (4) 

The Matthews Correlation Coefficient (MCC) [23] is given by 

( )( )( )( )

TP TN FP FN
MCC

TP FP TP FN TN FP TN FN

× − ×=
+ + + +

 
(5) 

The value of MCC is 0 for a random assignment and 1.0 for a perfect prediction. 

2.10   Position Specific Scoring Matrix 

All rungs of size 13 were extracted from the β-helices proteins available in SCOP 
database. These rungs were used to generate a position specific weight matrix. The 
main aim is to score the putative rungs identified by the dipeptide frequency based 
SVM module. The number of occurrences of each amino acid at a given position is 
compiled. Prophecy module in EMBOSS package [24] is used to generate the 
frequency matrix for amino acid occurrence at a specific position in the rungs. These 
counts are converted to frequencies that are used to calculate log odds scores. The 
odds score [25] is the frequency observed divided by the theoretical frequency 
expected (the background frequency of the amino acid, usually averaged over the 
protein ~0.05/aminoacid). For example, if the amino acid frequency is 0.79 and the 
estimated background frequency is 0.25, the odds score would be 0.79/0.25 = 3.16. 
Finally, odds scores were converted to log odds scores by taking the logarithm base 2. 

,
. 2log ( )i j

i j
i

F
W

P
=  (6) 
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where .i jW  is the scoring matrix value of amino acid i in position j. ,i jF  is the 

frequency of base i in position j and Pi is the background frequency of base i. 
As the logarithm of zero is infinity, a zero occurrence of a particular base in the 

matrix creates a problem. In this case, a very low frequency value of 0.0001 is 
assigned to amino acid count at such a position in a scoring matrix. PSSM is available 
as supplementary material at http://www.scs.dauniv.ac.in/research.php.   

3   The Algorithm 

3.1   Rung Prediction in Protein Sequence  

The dipeptide composition based SVM module as described above is used to predict 
rungs in protein sequences. A window of size 13 is used to predict rungs across a 
protein sequence. All predictions with score of 1 or above are selected as valid rungs. 
This cutoff was derived from known β-helix proteins. These putative rungs are 
wrapped into β-helix using a minimum distance threshold of 17 and a maximum 
distance threshold of 70 amino acids between adjacent rungs. In case, if two adjacent 
rungs are closer than the minimum distance threshold, then the rung with higher score 
is selected. Similarly, if the distance between two adjacent rungs is more than the 
maximum allowed distance and number of valid rungs is less than 5, then valid rungs 
counter is reset to zero and the existing rungs are rejected. The process is repeated for 
the rest of the protein sequence till at least a single wrap of 5 valid rungs is obtained. 
Proteins with a wrap of less than 5 rungs are rejected. Once the wraps are generated 
they are filtered for the presence of charged residues in rungs. This filter assigns a 
heavy demerit to rungs for presence of highly charged residues at inward pointing 
positions in rungs. 

3.2   Log Odds Score for Wrap 

A log odds score is determined for every predicted wrap using the PSSM. All adjacent 
rungs are aligned to generate a pairwise log odds score. The PSSM is used to refer the 
frequencies of occurrence of amino acid X at a position while calculating the score of 
aligned rung pair. A substitution score is calculated for each position in the two 
adjacent rungs, for example, log odds score is calculated for occurrence of amino acid 
X at position 1 in rung A as to the occurrence of amino acid Y at the position 1 in 
rung B. The log ratio for all the thirteen position of rungs is summed to give a 
pairwise log odds score. A random score of –1000 is assigned to alignment of a rung 
with itself. Once a pairwise log odds score is calculated for all the adjacent rung pairs, 
a log odds score for a wrap is calculated by taking the sum of pairwise log odds 
scores. All proteins with a wrap log odds score of -35 or more are further processed. 
The log odds score derived using PSSM helps in filtering a number of proteins that 
appear as false positives in SVM predictions, for example, LRR and amphiphatic 
proteins that have amino acids composition similar to β-proteins. 
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3.3   Completing the Parse 

Now that the position of rungs have been determined using SVM module, the position 
of B1 strands are determined using PSIPRED [26] predictions. Small β-sheets of 
average length four amino acids cannot be effectively predicted by SVM module, thus 
the secondary structure predictions from PSIPRED are used to place B1 strands 
between adjacent B2-T2-B3 rungs. A rung that lacks a predicted B1 strand is heavily 
penalized. 

3.4   α-Helix Filter 

The secondary structure predictions output from PSIPRED is used to screen for α-
helices in the β-helical wrap. If the α-helical content for a given wrap is more than 
20% then the wrap is disqualified and the protein is rejected. The threshold value of 
20% is determined from known β-helix proteins. The known β-helix proteins show an 
average α-helical content of 8-14% [27]. All proteins that pass α-helix filter and have 
a log odds score more than -35 are predicted as right-handed β-helix proteins. 
Similarly, if a putative rung shows presence of 4 or more amino acids to have a α-
helix secondary structure in PSIPRED results, then the rung  is rejected. 

4   Results 

SVM-BetaPred performs at par in comparison to the state-of-art right-handed β-helix 
prediction methods. It recognizes the RβH-helix fold with 100% sensitivity and 
99.6% specificity as compared to BetaWrapPro [14] with 94.1% sensitivity and 
99.4% specificity for known β-helix and non-β-helix proteins data set discussed in the 
materials and methods section. The method also succeeds in predicting the accurate 
rung position across the β-helix fold. It achieves 63.0% sensitivity and 68.1% 
specificity as compared to 58.0% sensitivity and 55.0% specificity for BetaWrapPro 
and 65.0% sensitivity and 46.3% specificity for BetaWrap on same set of known RβH 
proteins. Homology search tools like PSI-BLAST and HMMER fail to recognize 
RβΗ fold across superfamilies [1,14], thus results for SVM-BetaPred method are 
compared only with most accurate publicly available. A comparison of SVM-
BetaPred results is shown in Table 3. It should be noted that both BetaWrapPro and 
BetaWrap use HMMER to filter Left-handed β-helix and Leucine Rich Repeat 
proteins that appear as false positive predictions [1,14]. No such filter is used to the 
current SVM method. 

The performance of dipeptide composition based SVM module is shown in Table 4. 
The performance of SVM modules was evaluated through 5-fold cross-validation. The 
dipeptide composition based SVM module (kernel = RBF, γ = 18 and C = 900) was able 
to predict rung with an average Q2 of 89.2% and MCC of 0.75. 

SVM-BetaPred predicts 498 proteins as RßH proteins. The pectate lyases and 
galacturonases are well represented among the predicted proteins. However, few of 
the high-scoring putative proteins that include ribosomal proteins, polymerase and 
other DNA replication enzymes; repeat proteins like WD repeat proteins and  
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Table 3. Comparison of SVM-BetaPred, BetaWrapPro and BetaWrap results. Table denotes the 
percentage sensitivity (Sn) and specificity (Sp) obtained for known β-helices and rungs, dataset 
used for prediction (DB), number of proteins in dataset, number of predicted β-helix proteins 
(TP), false prediction in PDB minus dataset (FPmin) and PDB database (FP PDB) and 
incorrectly predicted folds (Folds). * denotes information in McDonnell et al [14]. 

Tool Sn  Sp  Rung 
Sn 

Rung 
Sp 

DB # of 
proteins 

TP FP 
min 

FP 
PD
B 

Folds  

SVM
-
Beta
Pred 

100 99.6 63.0 68.1 Swiss-
Prot 40 
(Releas
e 51.2) 

67,835 498 18 42 β− san
dwich/
barrel, 
jelly 
rolls, 
repeat 
protein 

Beta
Wrap
Pro 

94.1 99.4 58.0 55.0 Swiss-
Prot 40 
(Releas
e 44.0) 

48,269 774 23 57 β−prop
eller/sa
ndwich
/barrel, 
α helix, 
α+β pr
otein 

Beta
Wrap 

93.8 98.5 65.0 46.3 Swiss-
Prot 
(39.6) 
and 
TrEMB
L 
(14.11) 

595,89
0 

-- >30
0 * 

- β−prop
eller/sa
ndwich
/barrel, 
α helix, 
α+β pr
otein 

Table 4. The predictive performance of dipeptide composition based SVM to predict rungs in 
protein sequences. The results were obtained by 5-fold cross-validation. 

Data set Prediction accuracy (%) 
 Sensitivity Specificity Q2 MCC 

1 64.2 100 88.7 0.74 
2 68.0 100 90.1 0.77 
3 63.3 100 88.8 0.73 
4 65.3 100 89.4 0.75 
5 63.3 100 88.8 0.73 

transmembrane proteins are likely false positives predictions from independent 
evidences and high homology to known structures. Table 5 available as supplementary 
material at http://www.scs.dauniv.ac.in/research.php lists all predicted right-handed  
ß-helix proteins, each ranked by p-value, Z-score, score, accession number, ID, source 
organism, description and the wrap position. 
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4.1   Recognition of Unknown Sequences 

SVM-BetaPred identifies a number of probable right-handed ß-helices in the SW40 
data set. Some of these include Pectate lyase precursor from Pseudomonas 
fluorescens (P0C1A7), Bacillus subtilis (P39116); Pectin lyase from Saccharomyces 
cerevisiae (P47180), Agrobacterium tumefaciens (P27644), Gibberella fujikuroi 
(Q07181), Actinidia chinensis (P35336) and Pseudomonas sp. (P58598); 
Chondroitinase from Pedobacter heparinus (Q46079); Carrageenase from 
Alteromonas carrageenovora (P43478) and Dextranase from Penicillium minioluteum 
(P48845). As reported earlier by Jenkins et al [5], there is a clear bias for the 
occurrence of RßH fold across the major group of organisms. Only ~20% of the 
proteins predicted to contain RßH fold belong to eukaryotes, furthermore only a few 
archeal and viral proteins show the presence of this fold. We found that proteins with 
p-value < 0.65 have a strong likelihood to display right-handed β-helix fold. 

SVM-BetaPred successfully identifies newly solved β-helical protein hemoglobin 
protease (1wxr) from Escherichia coli with a p-value of 0.225 and β-roll subunit from 
C5 epimerase (2agm) from Azotobacter vinelandii with a p-value of 0.522 as RβH 
protein. Interestingly both BetaWrapPro and BetaWrap fail to identify 2agm as right-
handed β-helix. 

5   Discussions 

Machine learning methods like SVMs and neural networks are highly successful for 
residue state prediction where fixed window/pattern length is used [28]. In order to 
make optimal use of these techniques for protein structure prediction a fixed-length 
pattern must be generated. Amino acids composition that gives a fixed pattern length 
of 20 is commonly used by AI techniques for the classification of proteins. More 
information can be supplied by using by dipeptide composition. It gives a fixed 
pattern length of 400. Dipeptide composition has been widely used for the 
development of fold prediction methods [29] to achieve higher accuracies than that of 
amino acid composition based methods. A further step would be the use of tripeptide 
frequencies, however, AI techniques are unable to handle the noise due to the large 
number of input units and number of missing tripeptides in a protein. Thus, in this 
paper, we have constructed a SVM module on the basis of the dipeptide composition 
of β-helix proteins. This module is able to predict the rungs in a protein with overall 
accuracy of 90.1%, as shown in Table 4. 

To further improve prediction accuracy, a PSSM is developed to encapsulate more 
comprehensive information of β-helix proteins protein. This position weight matrix is 
used to score the rungs identified by SVM module and thus further enhance the β-
helix fold prediction accuracy. The results confirmed that our approach is capable of 
capturing more information about super secondary structures like rungs that are vital 
to β-helix fold prediction. The method would complement the existing prediction 
tools for β-helix prediction. 
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Abstract. We have investigated the relative performance of amino acid
occurrence and other features, such as predicted secondary structure, hy-
drophobicity, normalized van der Waals volume, polarity, polarizability,
and real/predicted contact information of residues, for recognizing pro-
tein folds. We observed that the improvement over other features is only
marginal compared with amino acid occurrence. This is because amino
acid occurrence, indirectly, can consider varieties of physical properties
which are useful to discriminate protein folds. If we consider only pro-
teins which are well aligned structurally with each other, the accuracy of
discrimination is drastically improved. In order to discriminate protein
folds more accurately, we need to consider anything other than structure
alignment.

1 Introduction

Deciphering the native conformation of a protein from its amino acid sequence
known as protein folding problem is a challenging task. The recognition of pro-
teins of similar folds is a key intermediate step for protein structure prediction.
Alignment profiles are widely used for recognizing protein folds [1,2]. Recently,
Cheng and Baldi [3] proposed a machine learning algorithm using secondary
structure, solvent accessibility, contact map and β-strand pairing for fold recog-
nition, which showed the pair wise sensitivity of 27%. On the other hand, it
has been reported that the amino acid properties are the key determinants of
protein folding and are used for discriminating membrane proteins [4], identifi-
cation of membrane spanning regions [5], prediction of protein structural classes
[6], protein folding rates [7], protein stability [8] etc. Towards this direction, Ding
and Dubchak [9] proposed a method based on neural networks and support vec-
tor machines for fold recognition using amino acid composition and five other
properties, and reported a cross-validated sensitivity of 45 %.

Recently [10], we have used the amino acid occurrence (not composition)
of proteins belonging to 30 major folds for recognizing protein folds. We have
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developed a method based on linear discriminant analysis (LDA), which showed
an accuracy of 37% for recognizing 1612 proteins from 30 different folds, which
is comparable with other methods in the literature, in spite of the simplicity of
our method and the large number of proteins considered.

In this paper, we have compared the performance of other features with that
of amino acid occurrence. We have found that amino acid occurrence outperform
other features to discriminate protein folds. Even if other features are considered
together with amino acid occurrence, the ability to discriminate protein folds is
hardly improved. On the hand, if we exclude pairs of proteins with poor 3D
structural alignment, we have found that discrimination by amino acid occur-
rence is drastically improved. In conclusion, amino acid occurrence turns out to
be the best feature to discriminate protein folds.

2 Materials and Methods

We have used three data sets to test the performance of our method. The first
data set is that used by Ding and Dubchak [9]. It is available from their web
site. The second data set is that used in the previous study [10]. It consists
of 1612 amino acid sequence among which there are less than 25 % sequence
identity. These amino acid sequence is taken from SCOP [11] and belong to one
of major 27 folds. It is available from our prediction server [12]. We also used
several feature (contact) vectors corresponding to these data set. The third one
is taken from CATH [13]. It consists of 4146 amino acid sequences with less than
40 % mutual sequence identity. These belong to one of major 39 topologies. The
selection of major 39 topologies is based upon Gubbi et al [14].

Since the method is described in our previous report [10], we have briefly
outlined our methods. First, we have counted the number of amino acid residues
in each amino acid sequence. Thus, we have 20 dimensional integer vector for
each protein. Then, LDA is applied to this set of vectors. LDA we used is lda
module in R [15]. Although there are many ways to weight the discrimination
[10], in this paper we weight each fold(topology) equally. In other words, prior
probability of each fold (topology) is assumed to be equal. As a measure of
performance, we employ accuracy Q,

Q =
∑

i TPi

N
, (1)

where TPi is the number of proteins correctly discriminated in ith fold (topology)
and N is total number of proteins considered. In the following, Q by leave one
out cross validation wil be reported.

3 Results

3.1 Accuracy of Discrimination Using Amino Acid Occurrence and
Other Features

Ding and Dubchak [9] has discriminated 27 folds for 311 proteins. They have
used support vector machine (SVM) and/or nerual networks (NN) with voting
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Table 1. Accuracy Q as a function of used features

Features Q [%] References

Composition 35
Composition + length 38
Composition + five features 39
Composition + five features 45 Ding and Dubchak [9]
Occurrence 42 Our previous report [10]
Occurrence + five features 44

system. Features they used differ from amino acid occurrence. They have re-
ported that their method achieved Q = 45% as 10-fold cross validation results.
In the previous report [10], we have shown that our method can achieve Q = 42%
in spite of simplicity of our method. Since ours are leave one out cross valida-
tion, our Q value does not have any statistical errors. However, Ding’s value is
10-fold cross validation. If we consider this, our value Q = 42% is comparative
with Ding’s value Q = 45%. Since our method uses solely amino acid occurrence
while Ding and Dubchak used many other features than amino acid occurrence
together, it is natural to expect that considering other features together with
amino acid occurrence can improve accuracy Q. In Table 1, we have summa-
rized Q as a function of used features. When we use more than two features to
discriminate folds, we simply apply LDA to merged feature vectors. This means,
if there are two features vectors fn with n components and fm with m features,

fn = (fn1, fn2, . . ., fnn) (2)
fm = (fm1, fm2, . . ., fmm), (3)

then we merge these two and apply LDA to

fm+n = (fn1, fn2, . . ., fnn, fm1, fm2, . . ., fmm). (4)

Additional five features, i.e., predicted secondary structure, hydrophobicity, nor-
malized van der Waals volume, polarity, polarizability, are those Ding and
Dubchak [9] used. Since their method is sophisticated, and it utilized all fea-
tures (i.e., composition + five features), their Q is better than us by 6 %. In
spite of that, our simple method employing amino acid occurrence and five fea-
tures has almost fulfilled this gap (Q = 44%). If we consider the simplicity of
our method, our method is even better than Ding and Dubchak’s method.

If we see Table 1 more detail, we can find many interesting things. For example,
if we consider only composition, Q is only 35 %, which is 7 % smaller than
Q = 42% when we consider only occurrence. On the other hand, if we consider
composition and length, i.e., the first 20 components of feature vectors consist
of composition and the 21th component is amino acid length, Q raises from
35% to 38 %. In spite of that, if we consider composition and five features, Q
becomes 39 %, which is as the same as Q = 38% when composition and length
are considered. Thus, solely considering length is comparative with considering
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all of five features. This definitely demonstrate the importance of considering
amino acid length. This is the reason why considering occurrence instead of
composition can improve accuracy by 7%.

3.2 SCOP

Since our method is simple, we can deal with larger data set. In our previous
report [10] we have applied our method to 1612 proteins belonging to 30 major
folds in SCOP. Q which we have achieved was 33 %. In this subsection, we have
compared Q when considering other features than amino acid occurrence with
Q when only amino acid occurrence is considered. In Table 2, we have listed
Q obtained using other features than amino acid occurrence. Other features we
used is average contacts in different sequence intervals, for example, 3-4, >4,
5-10, 11-20, 21-30, 31-40, 41-50 and >50. The contacts are predicted by several
different contact prediction servers [16,17,18] and are taken from real structure.
For some predicted contacts, number of amino acid sequence considered is less
than 1612. Clearly, the real contact information outperformed in discrimination.
On the other hand, the performance of amino acid occurrence is better than that
with predicted contacts.

We also consider dipeptide occurrence. Since there are 20 amino acids, dipep-
tide occurrence nij are 400 kinds, where nij is the dipeptide occurrence for ith
and jth amino acid (1 ≤ i, j ≤ 20). In Table 3, we have shown Q for considering
dipeptide occurrence. Consideration of dipeptide occurrence does not improve
Q at all. Even if we consider dipeptide occurrence together with amino acid
occurrence, Q is not improved.

It may be assumed that the consideration of dipeptide occurrence would im-
prove the Q value. However, we observed that the Q value is less than that with

Table 2. Accuracy Q as a function of used feature

Feature number of sequences Q [%] References

Occurrence 1612 33 Our previous report [10]
Composition 1612 26 Our previous report [10]
cornet 1530 22 Ref. [16]
nick 1555 13 Ref. [17]
gpcpred 1612 15 Ref. [18]
real structure 1612 50

Table 3. Accuracy Q for discrmination by dipeptide

Feature Q[%] References

Occurrence 33 Our previous report [10]
Dipeptide 29
Dipeptide+Occurrence 31
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amino acid occurrence. It might be due to the fact that dipeptide occurrence is
not an independent information of amino acid occurrence, because

ni =
∑

j

nij . (5)

Further, Table 3 shows that dipeptide occurrence cannot have more information
than that solely amino acid occurrence can provide.

3.3 CATH

In order to see if our method can discriminate other fold classification than
SCOP, we have considered topologies in CATH. In Table 4, we have shown the

Table 4. Accuracy Q [%] for SCOP and CATH with various sorts of definition of Q
and weighting. Bold numbers are the same as those in other tables.

with re-weighting without re-weighting
over all fold average over all fold average

CATH 26 34 43 24
SCOP 33 32 37 28

comparison between CATH and SCOP. It is clear that the performance depends
upon the definition of methods/accuracy which data base can be discriminated
better by our method. Especially, CATH is very sensitive to the variety of def-
inition of methods/accuracy used in these databases and our method couldwell
discriminate the folds. The lowest Q is 26 % for CATH while the highest one is
43 %. Thus, the later is larger than the former by more than 50 %. This results
show how difficult to decide what the best discrimination is. When we consider
the definition of Q used in the present research, CATH (Q = 26%) is harder
to discriminate than SCOP (Q = 33%). Although it is generally true that our
method can discriminate folds no matter how they are defined, the performance
is strictly dependent how we measure the goodness. Although we do not con-
sider CATH in more detail here, one has to be careful how we can measure the
goodness of discrimination.

4 Discussion

4.1 Why Does Occurrence Work So Well?

In the previous section, we have shown that our method (amino acid occurrence
+ LDA) can discriminate protein folds up to 30 to 40 % for up to thousands
proteins and up to 40 folds (topology). We have also shown that considering
other feature than amino acid occurrence generally can hardly improve accuracy
Q. In this subsection, we would like to discuss why amino acid occurrence works
well.
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First of all, it is natural that occurrence is better than composition in con-
trast to the first impression. Suppose we have some protein belonging to one
fold. Then, try to duplicate its amino acid sequence. Clearly, there will be very
few possibility that duplicated protein belong to same fold. This discussion defi-
nitely show that composition cannot detect this effect at all, because duplication
cannot change composition. The importance of protein length can be seen in Ta-
ble 1. Consideration of protein length in addition to composition can improve Q
by 3 %, which is as large as half of difference between composition and occur-
rence. In conclusion, we had better to consider occurrence than composition to
discriminate protein folds.

Second, one may think it is strange that consideration other feature than
occurrence cannot improve accuracy Q so much. However, any physical feature
can be more or less expressed by amino acid occurrence. Thus, linear combination
of amino acid occurrence can express more or less many of physical properties
of proteins. In order to see this, we have computed the correlation coefficients
between 49 physical, chemical energetic ans conformational properties of each
amino acid [19,20,21] and the first discriminate function for the second data set
case (i.e., 1612 proteins belonging to 30 major folds in SCOP). Each property
consists of 20 dimensional vector, like

P k = (P k
1 , P k

2 , . . ., P k
i , . . ., P k

20), (6)

where P k
i describe kth physical properties of ith amino acid. Since discrimi-

nant function is also 20 dimensional vector each component of which describe
contribution from each amino acid, we can take correlation coefficient between
them.

As can be seen in Table 5, 23 out of 49 properties have correlation coefficients
with less than 5 % q-values (i.e., FDR corrected p-values). We can find 24 out of
49 properties have less than 5% q-value if we apply the same procedure to the
third data set(CATH), although the number of commonly selected properties
is as large as those by chance. (Not shown here). Thus, it is clear that linear
discriminant function can express many of physical properties, at least, partly.
Thus, even if we do not consider physical properties directly, amino acid oc-
currence can express them if some of physical properties are important for the
discrimination of folds. This is the reason why the consideration of amino acid
occurrence can discriminate folds (topologies for CATH) well. As another ex-
ample of how well amino acid occurrence can express other physical properties,
we consider contact information in Table 2. In order to check if amino acid oc-
currence can express contact information taken from real structure (the last row
in Table 2), which achieved 50 % accuracy Q, we have applied multiple linear
regression,

f � =
∑
i′

Ci′n
�
i′ + C�

0, (7)

where f � is the contact information of lth protein, n�
i is ith amino acid occurrence

for �th protein. In Table 6, we have shown squared partial correlation coefficients
based upon (7). Although these values are not so high, they are too large to
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Table 5. Brief descriptions of 49 selected physico-chemical, energetic and conforma-
tional properties, their correlation coefficient with the first discriminate function for
SCOP, and q-value. Asterisks in the last column shows q-value is less than 5 %.

No. Description Corr. Coef. q-value [%] q ≤ 5%
1. Compressibility 0.03 44.5
2. Thermodynamic transfer hydrophobicity 0.44 5.4
3. Surrounding hydrophobicity 0.72 0.3 *
4. Polarity 0.47 4.5 *
5. Isoelectric point 0.19 25.8
6. Equilibrium constant with reference to the ionization property 0.07 41.4
7. Molecular weight 0.05 42.8
8. Bulkiness 0.36 10.4
9. Chromatographic index 0.65 0.4 *
10. Refractive index 0.19 25.8
11. Normalized consensus hydrophobicity 0.42 6.1
12. Short and medium range non-bonded energy 0.17 28.9
13. Long-range non-bonded energy 0.75 0.3 *
14. Total non-bonded energy 0.68 0.3 *
15. Alpha-helical tendency 0.08 39.4
16. Beta-helical tendency 0.68 0.3 *
17. Turn tendency 0.54 2.3 *
18. Coil tendency 0.45 5.0 *
19. Helical contact area 0.24 21.8
20. Mean rms fluctuational displacement 0.66 0.3 *
21. Buriedness 0.68 0.3 *
22. Solvent accessible reduction ratio 0.68 0.3 *
23. Average number of surrounding residues 0.67 0.3 *
24. Power to be at the N-terminal of alpha helix 0.45 5.0 *
25. Power to be at the C-terminal of alpha helix 0.58 1.2 *
26. Power to be at the middle of alpha helix 0.04 44.5
27. Partial-specific volume 0.28 16.7
28. Average medium-range contacts 0.02 46.0
29. Average long-range contacts 0.71 0.3 *
30. Combined surrounding hydrophobicity (globular and membrane) 0.72 0.3 *
31. Solvent accessible surface area for denatured protein 0.13 33.7
32. Solvent accessible surface area for native protein 0.56 1.8 *
33. Solvent accessible surface area for protein unfolding 0.51 3.0 *
34. Gibbs free energy change of hydration for unfolding 0.31 14.4
35. Gibbs free energy change of hydration for denatured protein 0.42 6.1
36. Gibbs free energy change of hydration for native protein 0.49 3.7 *
37. Unfolding enthalpy change of hydration 0.01 46.2
38. Unfolding entropy change of hydration 0.51 3.0 *
39. Unfolding hydration heat capacity change 0.69 0.3 *
40. Unfolding Gibbs free energy change of chain 0.16 29.9
41. Unfolding enthalpy change of chain 0.26 18.7
42. Unfolding entropy change of chain 0.50 3.1 *
43. Unfolding Gibbs free energy change 0.37 9.7
44. Unfolding enthalpy change 0.35 10.7
45. Unfolding entropy change 0.33 11.9
46. Volume (number of non-hydrogen side chain atoms) 0.10 37.0
47. Shape (position of branch point in a side-chain) 0.20 25.6
48. Flexibility (number of side-chain dihedral angles) 0.22 23.4
49. Backbone dihedral probability 0.33 11.9

neglect. Actually speaking, p-values for these is less than 1×10−14. If we consider
higher order,

f � =
∑
i′

[
Ci′n

�
i′ + C2

i′
(
n�

i′
)2]

+ C�
0, (8)
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Table 6. Squared Partial Correlation Coefficients for (7) and (8)

Contact range Squared Partial Correlation Coefficients

1st order (7) 2nd order (8)
3-4 0.29 0.37
>4 0.25 0.32
5-10 0.20 0.25
11-20 0.23 0.28
21-30 0.12 0.17
31-40 0.08 0.12
41-50 0.07 0.10
>50 0.19 0.25

squared partial correlation coefficients has increased (Here we have confirmed
that Akaike Information Criterion (AIC) has decreased by considering higher
order in order to avoid over fittings). This again demonstrates that amino acid
occurrence can express physical properties which are useful for discrimination of
protein folds.

In conclusion, in contrast to the intuition, amino acid occurrence can express,
at least partially, variety of physical properties with which protein folds can be
discriminated.

4.2 Folds vs Structural Alignments

Although we have considered many other features than amino acid occurrence,
accuracy Q cannot be improved so much. This is because the amino acid oc-
currence can have ability to express other physical features as discussed in the
previous subsection. In this subsection, we try to estimate the relationship be-
tween the goodness of structural alignment and the goodness of fold recognition.
If structural alignment between proteins belonging to the same fold is poor, it
is natural that fold recognition is not successful.

In order to check this point, we have employed the third data set (4146 proteins
belonging to 39 major folds). We have randomly picked up 100 pairs of proteins
from each of intra/inter topology pairs. For example, when we consider inter
topology pairs from topology I and J , pairs of proteins are taken such that one
of pair belongs to topology I while another of pair belongs to topology J . On the
other hand, when considering intra topology pairs, both of proteins are taken
from the same topologies.

Then for selected pairs, structural alignment has been done using Matalign
[22] which can get structural alignment even for chopped sequence which fre-
quently appears in CATH. We employ Nscore as a measure of goodness of
structural alignment,

Nscore ≡ 3Na

1 + Δ

1
min(length1, length2)

, (9)

where Na is number of aligned residues, Δ is root mean squared deviation
(RMSD) and length1 and length2 are number of residues of two aligned
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proteins. Larger Nscore means better structural alignment. Then, we have found
many intra topology pairs have less than or equal to Nscores of inter topology
pairs (Fig. 1(a) ). This means, solely the goodness of structural alignment cannot
decide if a pair of proteins belong to the same topology or not.

Here, we have considered the pair of topologies (3 10 129) and (3 30 360)
for which our method get the least accuracy Q. Then by applying structural
alignment to all pairs among these two topologies, we have excluded intra protein
pairs which have poorer structural alignment. Although Nscores within (3 10
129) are always larger than those between two topologies (Fig. 1 (b)), those

(a) (b)
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Fig. 1. Comparisons of histogram of Nscore. (a) Inter topology (left half) vs intra
topology (right half) for all of 39 topologies considered. Each histrgam is normalized
such that total area is unity no matter how many pairs are considered. Alignment has
been done randomly sampled 100 pairs of proteins for each of pairs of topologies. (b)
Nscore between topologies (3 10 129) and (3 30 360) (left half) vs that within (3 10
129) (right half) (c) Nscore between topologies (3 10 129) and (3 30 360) (left half)
vs that within (3 30 360) (right half) (d) Nscore within (3 10 129) (right half) vs that
within (3 30 360) (right half).
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Table 7. Sensitivity and accuracy for pair wise discrimination between topologies (3
10 129) and (3 30 360). Before : before exclusion of poorly structural aligned pairs of
proteins. After : after exclusion of poorly structural aligned pairs of proteins.

Sensitivity
(3 10 129) (3 30 360) Q

Before

Number of Proteins 19 20 39
0.58 0.40 0.48

After

Number of Proteins 19 6 25
0.76 0.83 0.76

within (3 30 360) are not (Fig. 1 (c)). Clearly, those within (3 30 360) are less than
those within (3 10 129) (Fig. 1 (d)). Then we found that our method can have
better Q by exclusion of pairs of proteins that have poor suructurally alignment.
In Table 7, we have shown the comparison of sensitivity and accuracy Q before
and after exclusion of badly aligned pairs of proteins. Although no proteins are
removed from topology (3 10 129), 14 out of 20 proteins are excluded from (3
30 360). Then sensitivity and accuracy drastically increases. Especially, it is
remarkable that sensitivity for (3 10 129) also increases although there are no
proteins removed. Thus, it is clear that our method can discriminate topologies if
they are well structurally aligned. In other words, we have to consider something
other than structural alignment to discriminate topologies in CATH. It is very
important to find what we should consider.

5 Conclusion

In this paper, we have investigated the relative performance of amino acid oc-
currence and other features to recognize protein folds. We found that consid-
eration of other features than amino acid occurrence cannot improve accuracy
Q so much. The reason is because amino acid occurrence can have ability to
consider variety of physical properties which are useful to discriminate pro-
tein folds. It is conformed that our method can better discriminate topolo-
gies if proteins within each topology have good structural alignment. In order
to improve accuracy Q, we have to consider something other than structural
alignment.
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Abstract. Protein-protein interactions play a very important role in
many biological processes, for example, information transfer along signal-
ing pathways, and enzyme catalysis. Recently, scientists tried to predict
the protein-protein interaction interface from sequences. Since the num-
ber of protein 3D structure still increase slowly comparing to the number
of protein sequences, it may be a good idea to predict the protein-protein
interface from sequences directly.

In this paper, the compositions and conserved functions of the amino
acids in the protein interface are studied, and the information of sec-
ondary structures is added. In addition, we used radio basis function
network to predict the protein interface with adding some useful bio-
chemical features.

1 Introduction

Protein-protein interactions play a very important role in many biological pro-
cesses, for example, information transfer along signaling pathways, and enzyme
catalysis. Recently, scientists tried to predict the protein-protein interaction in-
terface from sequences[1,2]. Since the number of protein 3D structure still in-
crease slowly comparing to the number of protein sequences, it may be a good
idea to predict the protein-protein interface from sequences directly.

In [2], authors have developed a two-stage support vector machine (SVM)
based method using amino acid sequence information to discriminate interface
residues and non-interface residues from surface residues, and showed good re-
sults. In this paper, we try to use an efficient Radial Basis Function Network
(RBFN) classifier and PSSM profiles to enhance the prediction results. In addi-
tion, we adopt secondary structure information and some biochemical properties
to improve the prediction accuracy. The experimental results showed that the
additional information are useful for prediction.

The radial basis function network (RBFN) is a special type of neural networks
with several distinctive features [3,4,5,6]. Since its first proposal, the RBFN has

J.C. Rajapakse, B. Schmidt, and G. Volkert (Eds.): PRIB 2007, LNBI 4774, pp. 132–141, 2007.
c© Springer-Verlag Berlin Heidelberg 2007
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attracted a high degree of interest in research communities. An RBFN consists
of three layers, namely the input layer, the hidden layer, and the output layer.
The input layer broadcasts the coordinates of the input vector to each of the
nodes in the hidden layer. Each node in the hidden layer then produces an
activation based on the associated radial basis function. Finally, each node in
the output layer computes a linear combination of the activations of the hidden
nodes. How an RBFN reacts to a given input stimulus is completely determined
by the activation functions associated with the hidden nodes and the weights
associated with the links between the hidden layer and the output layer. The
general mathematical form of the output nodes in an RBFN is as follows:

cj(x) =
k∑

i=1

wjiφ(||x − μi|| ; σi), (1)

where cj(x) is the function corresponding to the j-th output unit (class-j) and is
a linear combination of k radial basis functions φ() with center μi and bandwidth
σi. Also, wj is the weight vector of class-j and wji is the weight corresponding
to the j-th class and i-th center. The general architecture of RBFN is shown in
Fig 1.

In this paper, we select the spherical Gaussian function as our basis function
of RBFN, so the Eq.1 becomes:

cj(x) =
k∑

i=1

wji exp

(
−‖x − μi‖2

2σ2
i

)
. (2)

From Eq.2, we can see that constructing an RBFN involves determining the
number of centers, k, the center locations, μi, the bandwidth of each center,
σi, and the weights, wji. That is, training an RBFN involves determining the
values of three sets of parameters: the centers (μi), the bandwidths (σi), and the
weights (wji), in order to minimize a suitable cost function.

Nevertheless, the essential task in constructing a RBFN classifier is to optimize
the weights associated with the radial basis functions. In this paper, we proposes
an efficient algorithm for determining the weights associated with the RBFN
by exploiting the regularization theory [7] and the Cholesky decomposition [8].
The general observation is that the RBFN constructed is capable of delivering
the same level of prediction accuracy as the SVM, while enjoying significant
execution efficiency during the phase to construct the classifier.

2 Constructing the Radial Basis Function Network

In this paper, we focus on the calculation of the weights, so we conduct the
simplest method to determine the centers and bandwidths. We have adopted
all training instances as centers in the our experiments. Also, we employ the
simplest method which is use the fixed bandwidth of each kernel function, and
set the bandwidth as 5 for each kernel function.
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Fig. 1. General Architecture of Radial Basis Function Networks

After the centers and bandwidths of the kernel functions in hidden layer have
been determined, the transformation between the inputs and the corresponding
outputs of the hidden units is now fixed. The network can thus be viewed as an
equivalent single-layer network with linear output units. Then, we use the lease
mean square error (LMSE) method to determine the weights associated with the
links between the hidden layer and the output layer.

In the following section, we will show how the LMSE method have been used in
data classification field, and then propose a method which has a better theoretical
foundation and practical use.

Assume h is the output of the hidden layer.

h =
[
φ1(x) φ2(x) . . . φk(x)

]T
, (3)

where k is the number of centers, φ1(x) is the output value of first kernel function
with input x. Then, the discriminant function cj(x) of class-j can be expressed
by the following:

cj(x) = wT
j h, j = 1, 2, . . . , m (4)

where m is the number of class, and wj is the weight vector of class-j. We can
show wj as:

wj =
[
wj1 wj2 . . . wjk

]T
. (5)

After calculating the discriminant function value of each class, we choose the
class with the biggest discriminant function value as the classification result.
We will discuss how to get the weight vectors by using least mean square error
method in the following subsections.
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2.1 Traditional Least Mean Square Error Method

The traditional LMSE method was proposed by Broomhead and Lowe [9]. This
method is originally proposed for function approximation, and is the most popu-
lar supervised learning method of constructing the weights of RBFN [4,5,10,11].
In this method, the objective function of class-j can be shown as:

min
n∑

i=1

[cj(xi) − vj(xi)]
2 , (6)

where

vj(xi) =
{

1 if x ∈ class-j,
0 otherwise. . (7)

This system is overconstrained, being composed of n equations with k un-
known weights, then the optimal solution of wj can be written as

w∗
j = Φ+yj , (8)

where yj = [vj(x1) vj(x2) . . . vj(xn) ]T , Φli = φi(xl) and Φ+ is the pseudoinverse
of Φ. The matrix Φ is rectangular (n×k) and its pseudoinverse can be computed
as

Φ+ = (ΦT Φ)−1ΦT ,

provided that (ΦT Φ)−1 exists. The matrix (ΦT Φ) is square and its dimensionality
is k, so that it can be inverted in time proportional to k3.

The cost of computing Φ+ is very high. Especially, we need to store Φ of size
(n × k) in the memory. The value of n in some classification problems is very
large, such that it may be impractical to have such large amounts of memory
space for storage. Therefore, this method may not be suitable for the use of
classification problem.

2.2 Least Mean Square Error Method with Statistics Techniques

The improved LMSE method for data classification was proposed by Devijver
et. al.[12]. The idea of this method is basically the same with the traditional
method, but [12] used the statistics techniques to analyze the whole problem.
From this aspect, we can get the following results, and the major advantage from
this approach is that we don’t need to store Φ in the memory.

For a classification problem with m classes, let Vi designate the i-th column
vector of an m × m identity matrix and W be an k × m matrix of weights:

W =
[
w1 w2 . . . wm

]
. (9)

Then the objective function to be minimized is

J(W ) =
m∑

j=1

PjEj

{∥∥WT h − Vj

∥∥2
}

, (10)
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where Pj and Ej{} are the a priori probability and the expected value of class-j,
respectively.

To find the optimal W that minimizes J , we set the gradient of J(W ) to be
zero:

∇W J(W ) = 2
m∑

j=1

PjEj

{
hhT

}
W − 2

m∑
j=1

PjEj {h}V T
j

= [0], (11)

where [0] is a k × m null matrix.
Let Ki denote the class-conditional matrix of the second-order moments of h,

i.e.
Ki = Ei

{
hhT

}
. (12)

If K denotes the matrix of the second-order moments under the mixture distri-
bution, we have

K =
m∑

j=1

PjKj . (13)

Then Eq. 11 becomes
KW = M, (14)

where

M =
m∑

j=1

PjEj {h}V T
j . (15)

If K is nonsingular, the optimal W can be calculated by

W ∗ = K−1M. (16)

When compared to the traditional method, the size of K, k × k, is much
smaller than the Φ matrix of size (n × k) described in the previous subsection.
Therefore, this method requires less memory space for storing the matrix.

However, there is a critical drawback of this method. That is, K may be
singular and this will crash the whole procedure. By observing the matrix hhT ,
we are aware of that the matrix hhT is symmetric positive semi-definite (PSD)
matrix with rank = 1. Since K is the summation of hhT for each training
instance, K is also a PSD matrix with rank ≤ n. However, PSD matrix may be
a singular matrix, so we should add the regularization term to make sure the
matrix will be invertible.

In the regularization theory [7], it consists in replacing the objective function
as follows:

J(W ) =
m∑

j=1

PjEj

{∥∥WT h − Vj

∥∥2
}

+ λ

m∑
j=1

wT
j wj , (17)

where λ is the regularization parameter. Then the Eq. 14 becomes

(K + λI)W = M. (18)
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If we set λ > 0, (K + λI) will be a positive definite (PD) matrix and therefore
is nonsingular. The optimal W ∗ can be calculated by

W ∗ = (K + λI)−1M. (19)

However, the PD matrix has many good properties, and one of them is a
special and efficient triangular decomposition, Cholesky decomposition. By using
Cholesky decomposition, we can decompose the (K + λI) matrix as follows,

(K + λI) = LLT , (20)

where L is a lower triangular matrix. Then, the Eq. 18 becomes

(LLT )W = M. (21)

Actually, we can solve the linear system efficiently by using backsubstitution
twice. In our experiments, Cholesky decomposition is about 10-20 times faster
than alternative methods for matrix inversion. For example, in our experiments,
we only used 25.36 seconds for inverting a 2558 × 2558 matrix in letter data
set, while the traditional method used 754.93 seconds. It’s about 30 times faster
than the traditional method.

Finally, we can get the optimal w∗
j for class-j from W ∗, and then the optimal

discriminant function cj(x) for class-j is derived. By using the regularization
theory, the optimal weights can be obtained analytically and efficiently.

3 Experimental Results of Interface Residues Prediction

3.1 Datasets

We adapt the same dataset from Yan et al [2]. The dataset is originally from
Chakrabarti et al. [13]. Yan et al. selected 77 protein chains from 70 protein-
protein complexes.

3.2 PSSM Profiles

Recently, scientists try to use the Position Specific Scoring Matrix (PSSM) pro-
files as features in residues level function or structure prediction. [14,15] In this
paper, we also adapt the PSSM profiles as our primal feature set instead of se-
quence residue type only. We obtain the PSSM profiles by using PSI-BLAST
and non-redundant (NR) protein database. Also, every element has been scaled
by 1

1+e−x .

3.3 Biochemical Properties

We tried 7 biochemical properties, which are hydrophobic, polar, small, aliphatic,
aromatic, positive, and negative. In addition, we consider the properties toward
interface-based or surface-based. That is, if the amino acid appears in interface
more frequent than in surface, we think this amino acid is interface-based. Oth-
erwise, we think the amino acid is surface-based. We list the properties with
interface-based/surface-based in Table 1.
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Table 1. Amino Acid interface-based(I)/surface-based(S) Properties

Property I L V C A G M F Y W H K R E Q D N S T P

Hydrophobic S © © © ∗ ∗ ∗ © © © © © ∗ © © © © © © ∗ ©
Hydrophobic I ∗ ∗ ∗ © © © ∗ ∗ ∗ ∗ ∗ © © © © © © © © ©

Polar S © © © © © © © © © © © ∗ © ∗ ∗ ∗ ∗ ∗ ∗ ©
Polar I © © © © © © © © ∗ ∗ ∗ © ∗ © © © © © © ©
Small S © © © ∗ © ∗ © © © © © © © © © ∗ ∗ ∗ ∗ ∗
Small I © © ∗ © ∗ © © © © © © © © © © © © © © ©

Aliphatic I ∗ ∗ ∗ © © © © © © © © © © © © © © © © ©
Aromatic I © © © © © © © ∗ ∗ ∗ ∗ © © © © © © © © ©
Positive S © © © © © © © © © © © ∗ © © © © © © © ©
Positive I © © © © © © © © © © ∗ © ∗ © © © © © © ©
Negative S © © © © © © © © © © © © © ∗ © ∗ © © © ©

3.4 Secondary Structure Information

To further improve the prediction performance, we combined the PSSM profiles,
biochemical properties and the predicted secondary structure from PSIPRED
[14]. Secondary structure play a very important role on protein folding and
3D structure, and generally believe that the function of protein is basically de-
termined by its structure. We think the secondary structure information may
useful on interface residues prediction. The experimental results show that the
secondary structure information did improve the prediction performance.

4 Results

We used recall, precision, f-score, MCC (Matthew’s correlation coefficient), ACC
(accuracy) to measure the prediction performance. TP, FP, TN, FN are true
positive number, false positive number, true negative number, and false negative
number, respectively.

Recall =
TP

TP + FN
(22)

Precision =
TP

TP + FP
(23)

F-score =
2×Recall× Precision

Recall + Precision
(24)

ACC =
TP +TN

TP + FP+ TN+ FN
(25)

MCC =
TP× TN− FP× FN√

(TP + FN)(TP + FP)(TN + FP)(TN + FN)
(26)

First of all, we compared our proposed RBF network classifier with Yan’s
results on [2]. Mr. Yan provided us one of datasets of his experiment, and told
us that the dataset may have some improper information within the training
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Table 2. Comparison results of Proposed Method and Yan Method

Proposed Yan’s Method [2]
1st stage 2nd stage 1st stage 2nd stage

Precision 0.42 0.77 0.44 0.58
Sensitivity 0.52 0.79 0.43 0.39
Accuracy 0.63 0.86 0.66 0.72
MCC 0.19 0.68 0.19 0.30

Table 3. Comparison results of adding different biochemical properties

Sensitivity Precision Accuracy MCC F-score

PSSM 0.587 0.361 0.601 0.174 0.447

+Aliphatic I 0.594 0.374 0.616 0.197 0.459

+Aromatic I 0.597 0.379 0.621 0.204 0.463

+Positive I 0.608 0.375 0.614 0.201 0.464

+Small 0.602 0.375 0.615 0.199 0.462

+hydrophobic 0.599 0.378 0.619 0.203 0.463

+Negative S 0.591 0.378 0.620 0.201 0.461

+Polar I 0.599 0.377 0.618 0.202 0.462

data. As Table 2 shows, our proposed classifier performs significantly better
than results on [2], especially on second stage results. However, this dataset
seems not fair on training and testing data, and than easily overfit with second
stage process. We analyzed the problem, and concluded that the problem may
be caused by residues based 5-fold cross validation, so we divided the 77 protein
chains into 5 groups, and than used the new divided dataset as the comparison
standard.

In Table 3, we listed the different results with the new divided dataset. The
“PSSM” row listed the results by using PSSM profiles as features. Also, the fol-
lowing rows are the results by adding different biochemical properties as features.
We can see the best results are from PSSM profile with 3 additional biochemical
features, Aliphatic I, Aromatic I, and Positive I.

In Table 4, we can see the secondary structure information can enhance the
prediction accuracy. The final results show that the method proposed in this
paper can achieve the 0.471 of F-score and 0.214 of MCC.

Table 4. Comparison results of different additional features

Sensitivity Precision Accuracy MCC F-score

PSSM 0.587 0.361 0.601 0.174 0.447
PSSM+Biochemical 0.608 0.375 0.614 0.201 0.464
PSSM+Biochemical+SSE 0.614 0.381 0.621 0.214 0.471
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5 Conclusion

In this paper, we proposed an efficient method to construct an RBFN classi-
fier by using the improved LMSE method for constructing an RBFN optimized
for data classification and bioinformatics applications. The method proposed by
[12] is more efficient than the traditional one, but it may suffer the singular
matrix problem and fails to build the classifier in such case. We solved the sin-
gular matrix problem by using the regularization theory, and used the Cholesky
decomposition to speedup the matrix inversion process. This provides a good
framework for constructing an RBFN in classification problems, and the pro-
posed method can obtain the optimal weights analytically and efficiently.

We have applied our proposed approach to the prediction of interface residues.
The interface residues prediction is one of the most important problems in com-
putational biology and bioinformatics. Experimental results showed that com-
bining proposed classifier and additional biochemical properties and secondary
structure information can significant improve the prediction accuracy.
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Abstract. Many structural and functional properties of proteins can be 
described as a one-dimensional one-to-one mapping between residues of protein 
sequence and target structure or function. These residue level properties (RLPs) 
have been frequently predicted using neural networks and other machine 
learning algorithms. Here we present an algorithm to dynamically exclude from 
the neural network training, examples which are most difficult to separate. This 
algorithm automatically filters out statistical outliers causing noise and makes 
training faster without losing network ability to generalize. Different methods 
of sampling data for neural network training have been tried and their impact on 
learning has been analyzed. 

Keywords: Binding sites, Neural networks, Sequence information, Outliers. 

1   Introduction 

Sequence-structure-function relationship of proteins has been historically one of the 
most important issues in bioinformatics for a very long time [1-3]. However, despite 
an intense effort to predict protein structure from the amino acid sequence, the task 
has remained difficult and far from complete. Compared to that ambitious goal of 
predicting everything from sequence or structure, it seems much more plausible to 
predict the so-called one-dimensional properties of protein structure such as 
secondary structure, solvent accessibility and coordination number on the one hand 
and biological functions such as binding with specific ligands or DNA bases on the 
other. Both one-dimensional structural features of proteins and probability of binding 
of an amino acid with other molecules have been predicted from the information of 
amino acid sequence with good success [4-9] and have in many ways led the way for 
an eventual ab initio structure and function prediction without homology or structure 
models. One of the most widely used method for mapping sequence information on to 
functional and structural target properties has been neural network. Neural networks 
provide a very efficient tool to model almost any non-linear relationship between 
sequence data and their target properties. These models have been successful in 
predicting secondary structure, solvent accessibility and binding sites. As larger data 
sets of binding sites and structural properties become available, their processing with 
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neural networks will become slower albeit more powerful. Faster algorithms and 
efficient analysis of feature vectors and their relationshop with target properties are 
needed to address these problems. One of the problems is poor predictability of some 
of the patterns even when most of the samples are well predicted. We have developed 
an algorithm to dynamically select training examples for neural network and flag 
them as prediction outliers. In this algorithm a neural network is not trained on the 
entire data set, but the error scores are computed for each data example and then the 
examples contributing the most to the error score are eliminated from the training 
process. We report the resulting learning curves, amount of excluded data and their 
impact on the ability of the neural network to generalize prediction. 

2   Methods 

2.1   Definition of an Outlier 

A statistical outlier is generally known to be a pattern with too high or too small value 
of its corresponding attribute. In the context of feature-based predictions of target 
properties, we define a statistical outlier to be a pattern in which the relationship 
between its feature vector and its target property does not follow the same relationship 
as done by the overall data set. Formally, a pattern will be classified as an outlier if 
the prediction error (εi) in that sample is much more than the overall variance in the 
data i.e. 

εi  >  εav + α. σ (ε)                                                   (1) 

Where εav is the average absolute error in the overall data, σ (ε) is the standard 
deviation in the pattern-wise absolute error and εi is the error in the ith sample, to be 
tested for being an outlier or not and α is an adjustable parameter to determine the 
strictness of the flagging criterion. 

2.2   Treatment of Outliers 

Once the training examples have been flagged as outliers, there are at least two 
methods of treating them. First, instead of assigning them high error values returned 
by the predictor, their predicted values may be reassigned such that their contribution 
to error does not exceed the criterion set by (1). Alternatively, the outliers may be 
totally removed from the data set and they do not contribute at all to the performance 
scores. Later leaves behind a smaller data and and the calculation of the error gradient 
becomes faster in the process.  We have used the both these criterion to analyze 
learning behavior but report the results obtained from the second one.  

2.3   Dynamic Identification of Outliers 

Using the outlier identification criterion given by (2), the identification of outliers has 
to be done for every epoch as data points move from normal to outlier categories and 
vice versa as the training progresses. In particular, the random initialization of weights 
produces large variance in error and therefore very few outliers according to the 
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above definition. As the training progresses, both mean error and their variance 
decrease with a clearer picture of outliers emerging. A typical variation in the number 
of patterns identified as outliers with training (epoch number) has been shown in 
Figure 2 (see results section).  

2.4   Data Sets and RLP Types 

Three types of predictions are attempted viz. Solvent accessibility (class-type 
predictions and real value predictions) [5-6], DNA-binding site predictions [7-8] and 
Carbohydrate-binding site predictions [9]. Data sets used for these predictions have 
been explained in the corresponding previous publications. In this work, we have used 
512 proteins for analyzing ASA prediction, 40 proteins for analyzing sugar-binding 
sites and 62 proteins for assessing DNA-binding sites. Similar results have been 
obtained for these data sample, but the results discussed in this paper are based on 
solvent accessibility data because its values are distributed in a range from 0 to 1, 
instead of binary values in the case of binding sites and hence analyzing performance 
in solvent accessibility prediction is easier.  

2.5   Neural Networks 

In all our prediction experiments, a layered neural network with single hidden layer 
containing two units was used. The input layer consists of 60 units representing a 
tripeptide with a target residue at the center and one sequence neighbors on either side 
included as context information. Output layer is a single neuron with real valued 
outputs, transformed into binary values with a simple threshold function. Activation 
function for the hidden layer is arctan, and for the output layer it is a sigmoidal 
function. Neural network is trained using generalized delta-rule and weights are 
updated in the direction of maximum gradient after presenting all patterns at the end 
of each epoch according to the following learning rule:  

ΔWijk = η ∂E/∂Wijk                                                  (2) 

Learning rate was maintained at 1.0 for all these calculations.  

3   Results and Discussion 

3.1   Outlier Exclusion Does Not Affect Generalization 

Figure 1 shows learning curves of a neural network trained for 200 epochs using 
generalized delta rule, using different criterion of data exclusion. Mean absolute error 
of prediction in the test data, used for determining the stopping point for training was 
used as a measure of generalization. This particular graph shows the learning curves 
for solvent accessibility and similar curves were also obtained with binding data of 
DNA and carbohydrates. We observe that the neural network training carried out at 
α=3 has almost the same prediction error as the one carried out on full data sets. 
Training performed with a more strict criterion of data inclusion (α=1) suffered from 
poor training performance as it excluded too many data points. An interesting  
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Fig. 1. Learning history of mean absolute error in the test data (generalization). Abbreviation 

(mae-full: Mean Absolute Error in test data without error exclusion, mae-xm+α.d: MAE in test 

data when training points with εi > εav + α. σ (ε) were excluded). MAE values are marked 
as negative to contrast them from correlation and other accuracy scores to indicate that a 
smaller MAE means better prediction. 

observation was made for α=2. There was a small improvement in prediction 
performance of the neural network at this value, suggesting that a suitably selected 
value of α may actually improve the generalizing ability of neural network. However, 
DNA and Carbohydrate-binding sites data did not show a similar improvement, 
probably because the amount of data available in these categories was not large 
enough to take advantage of this situation. 

3.2   Error Distribution and History of Outlier Frequency 

In Figure 2, we show the outlier frequency variations in different stages of neural 
network training. In the early stages of neural network training errors are randomly 
distributed leading to a large value of variance and hence no outliers can be identified 
in the early training. As the neural network learns the variance in prediction error 
decreases and outliers can be identified. With a strict criterion of outliers (large α), 
very few outliers are detected and at small values of α, too many patterns are 
excluded from training. A large number of rejected data for α=1, is clearly responsible 
for poor generalization of prediction (Figure 1). A value of α=2 is suitable for 
generalization and also excluding sufficient number of data points to speed up the 
process of learning.  
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Fig. 2. Learning history and number of excludable outliers. Abbreviations: nx-xm+α.d (number 

of outliers with)  εi > εav + α. σ (ε). 

3.3   Role of Data Sets 

Solvent accessibility and binding sites employ similar neural networks and hence 
similar results were obtained by using outlier exclusion criterion. However, target 
vectors in binding site problem are binary valued, whereas ASA is a real-valued 
function. Mean absolute error in case of binding sites does not carry much physical 
meaning like ASA which can take continuous values. Thus the neural network for 
these problems was also trained to maximize coefficient of correlation between 
predicted and observed values (data not shown). Variance in the prediction error for 
these two binary class predictions was found to be smaller than ASA data and no 
outliers could be detected at α=3. However a value of α=2, was found to be optimum 
at which significant number of outliers could be removed.  

3.4   Biological Basis of Prediction Outliers 

Machine learning relies on pattern recognition and a neural network tries to recognize 
patterns which it has seen during training. Thus if a pattern has not been seen before, 
the neural network fails to recognize it. Conversely, a pattern which is present in the 
training data but has no similar patterns in the validation data does not contribute to 
the performance. A poorly predicted pattern within the training data is just a noise 
which might tend to over-train the neural network without leading to generalization, 
thus increasing the unnecessary computational overhead. Furthermore, the nature of 
relationship between selected features and their target property for some patterns may 
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not follow a general trend for which neural networks are trained. From a point of view 
of protein structure, this may be caused by some unusual bonds (e.g. disulfide bond), 
presence of some ligand in the neighboring region or some features of the 
biochemical or thermodynamic environment, which is not usually seen by proteins or 
which cannot be determined from local sequence and evolutionary information. 

4   Conclusion 

A new algorithm for filtering noisy sequence data from neural network training has 
been developed which shows promise for applications in RLP predictions. Outlier 
removal can speed up neural network training without loss of generalization. Different 
definitions of prediction outliers have been employed and structural basis of the same 
has been discussed. 
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Abstract. The analysis on the amino acid sequences of transmembrane beta 
barrel proteins (TMBs) provides deep insights about their structure and 
function. We found that the occurrence of Ser, Asn and Gln is significantly 
higher in TMBs than globular proteins, which might be due to their importance 
in the formation of β-barrel structures in the membrane, stability of binding 
pockets and the function of TMBs. Utilizing this information, we have devised 
statistical methods and machine learning techniques to discriminate TMBs from 
other folding types of globular and membrane proteins and we obtained the 
maximum accuracy of 96%. Further, we have devised protocols for identifying 
the membrane spanning β-strand segments and detecting TMBs in genomic 
sequences.  

Keywords: β-barrel membrane protein, amino acid composition, sequence 
analysis, discrimination, prediction, genome. 

1   Introduction 

The β-barrel membrane proteins (TMBs) perform a variety of functions, such as 
mediating non-specific, passive transport of ions and small molecules, selectively 
passing the molecules like maltose and sucrose and are involved in voltage dependent 
anion channels. These proteins contain β-strands as their membrane spanning 
segments and are found in the outer membranes of bacteria, mitochondria and 
chloroplast. The assembly of TMBs is somewhat more complex when compared to 
the assembly of transmembrane helical proteins having α-helices as transmembrane 
parts. This is probably due to the difference of amino acid sequences in the 
transmembrane part strands and helices; transmembrane helical proteins (TMH) 
contain a stretch of hydrophobic amino acid residues whereas transmembrane strand 
proteins are intervened by several charged and polar residues. Because of this feature, 
most predictive schemes, which are successful in predicting transmembrane helical 
segments, fail to predict the transmembrane strand segments and discriminating β-
barrel membrane proteins.  
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We have systematically analyzed the amino acid compositions of TMBs, TMH 
and globular proteins, and observed that the residues Ser, Asn and Gln are 
predominant in TMBs. Utilizing amino acid and dipeptide compositions, we have 
devised statistical methods and machine learning techniques for discriminating 
TMBs. Further, we have developed a rule based approach and neural networks based 
method for identifying the membrane spanning segments. A novel protocol has been 
proposed for detecting TMBs in genomic sequences and a database has been set up 
for the annotation of TMBs in genomes.  

2   Materials and Methods 

2.1   Dataset 

We have constructed several sets of data for the analysis, discrimination and 
prediction: (i) a dataset of 377 well annotated TMB sequences obtained from PSORT 
database (1) and a subset of 208 non-redundant TMB sequences with less than 40% 
sequence identity obtained with CD-HIT algorithm (2), (ii) non-redundant dataset of 
19 known TMB structures with the sequence identity of less than 25%, (iii) 674 
globular proteins belonging to different structural classes (155 all-α, 156 all-β, 184 
α+β and 179 α/β proteins), (iv) non-redundant data set of 1602 globular proteins 
belonging to 30 different folds obtained from Protein Data Bank (3) (v) a dataset of 
268 well-annotated TMH sequences and a subset of 206 non-redundant TMH 
sequences obtained from PSORT and (vi) the amino acid sequences of 275 completed 
genomes from NCBI database (http://www.ncbi.nih.gov/). This includes 23 genomes 
from archaea, 237 from bacteria and 15 from eukaryote. The total number of proteins 
in these three kingdoms of life is 52241, 686562 and 165186, respectively with the 
total of 903,989 sequences. 

2.2   Computation of Amino Acid and Dipeptide Compositions 

The amino acid composition for a residue type (e.g. Ala) in a protein is the number of 
amino acids of specific type normalized with the total number of residues. It is 
defined as:  

Comp(i) = Σ ni/N                                                    (1) 

where, i stands  for the 20 amino acid residues. ni is the number of residues of each 
type and N is the total number of residues. 

The composition of dipeptides is a measure to quantify the preference of amino 
acid residue pairs in a sequence. This has been computed using the following 
expression: 

Dipep(i,j) = ΣNij*100/ (ΣNi+ΣNj)                                   (2) 

where i,j stands  for the distribution of 20 amino acid residues at positions i and i+1. 
Ni,j is the number of residues of type i followed by the residue j. ΣNi and ΣNj are the 
total number of residues of type i and j, respectively.  
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The concept of motifs provides the information about the preference of residue 
pairs with a gap (any residue between the pair of residues). This has been computed 
using the same expression that we used for dipeptide composition (Eqn. 2). The main 
difference is that the residues i and j are the distribution of 20 amino acid residues at 
positions i and i+1 for dipeptides, and i and i+2, i and i+3 etc. for motifs. 

2.3   Discrimination Methods 

We have used statistical methods and machine learning algorithms for discriminating 
TMBs. In these methods, we have used the compositions of amino acids and 
dipeptides as attributes. The protocol used to discriminate TMBs using amino acid 
composition is given below: The amino acid composition has been computed for 
standard datasets of both globular (Compglob) and TMBs (CompTMB). For a new 
protein, X, firstly, we have calculated the amino acid composition using Eqn. 1. Then 
we have calculated the total absolute difference of amino acid composition between 
protein X and the amino acid composition of globular proteins, and that between 
protein X and TMBs. The protein X is predicted to be a TMB if the deviation is 
lowest with CompTMB and vice versa (4). 

We have followed the below mentioned steps to discriminate TMBs using residue 
pair preference/motif: (i) calculated the dipeptide composition for both globular 
(Dipepglob) and TMBs (DipepTMB) and the difference between them (σTMB-glob); (ii) for 
a new protein, X, they have calculated the dipeptide composition using Eqn. 2 and 
given weights to the dipeptide composition with σTMB-glob; (iii) calculated the sum of 
weighted dipeptide composition and (iv) the protein X is predicted to be an TMB if 
the total weighted dipeptide composition is positive and globular protein otherwise. 

Further, machine learning techniques including Bayes functions, Neural networks, 
Logistic functions, Support vector machines, Regression analysis, Nearest neighbor 
methods, Meta learning, Decision trees and Rules have been used to discriminate the 
TMBs. 

2.4   Assessment of the Validity of the Method 

We have performed a 5-fold cross-validation test for assessing the validity of the 
present work. In this method, the data set is divided into five groups, four of them are 
used for training and the rest is used for testing the method. The same procedure is 
repeated for five times and the average is computed for obtaining the accuracy of the 
method. 

We have used different measures to assess the accuracy of discriminating TMBs, 
non-TMBs and combination of the two. The term, sensitivity shows the correct 
prediction of TMBs, specificity about the non-TMBs and accuracy indicates the 
overall assessment. These terms are defined as follows:  
 

 Sensitivity = TP/(TP+FN) 
 Specificity = TN/(TN+FP) 
 Accuracy = (TP+TN)/(TP+TN+FP+FN), 
 
where, TP, FP, TN and FN refer to the number of true positives (TMBs identified as 
TMBs), false positives (non-TMBs identified as TMBs), true negatives (non-TMBs 
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identified as non-TMBs), and false negatives (TMBs identified as non-TMBs), 
respectively. 

3   Results and Discussion 

3.1   Amino Acid Composition 

We have computed the amino acid compositions for the 20 amino acid residues in 377 
TMBs and the results are displayed in Fig. 1. In this figure, we have also included the 
data for 674 globular proteins for comparison. We observed that the composition of 
Glu, His, Ile and Cys are higher in globular proteins than TMBs and an opposite trend 
is observed for Ser, Asn and Gln (4). The formation of disulfide bonds between Cys 
residues requires an oxidative environment and such disulfide bridges are not usually 
found in intracellular proteins (5). Further, the analysis on the three-dimensional 
structures of 15 β-barrel TMBs showed the presence of just eight (0.1%) Cys residues 
and none of them are in membrane part. Hence, the occurrence of Cys is significantly 
higher in globular proteins than in TMBs. Glu is a strong helix former and this 
tendency influences the higher occurrence of it in globular proteins than TMBs. The 
comparative analysis on the occurrence of Ile in the β-strand segments of globular and 
TMBs revealed that the preference of Ile in TMBs is less than that in globular 
proteins, which may increase the occurrence of it in globular proteins. 

The structural analysis of several TMBs shows that the residues, Ser, Asn and Gln 
play an important role to the stability and function of TMBs. In OmpA, the interior of 
β-strands contain an extended hydrogen bonding network of charged and polar 
residues and especially, the side chains of the residues, Ser22, Gln228 and Asn258 in 
OmpT, located above the membrane form hydrogen bonds to main chain atoms in the 
β-barrel. Interestingly, none of the residues, which have high composition in globular 
proteins (Glu, His, Ile and Cys), are involved in such pattern (6,7). In FecA, Yue et al. 
(8) showed that the binding pockets for diferric dicitrate involve the hydrogen bonds 
from the three residues, Gln176, Gln570 and Asn721 as shown in Figure 2. Similar 
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Fig. 1. Amino acid composition of the 20 amino acid residues in globular (filled bars) and 
TMBs (open bars) 
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trend is observed in other TMBs and this 
analysis revealed that the high occurrence 
of Ser, Asn and Gln in TMBs is required 
in the formation of β-barrel structures in 
the membrane, stability of binding 
pockets and the function of TMBs.  

3.2 Discrimination of β-Barrel  
            Membrane Proteins 

We have used the compositions of amino 
acids, dipeptides and motifs for 
discriminating TMBs using statistical 
methods. An example to discriminate 

TMBs using amino acid composition is shown in Table 1.  
For 1ADT (adenovirus DNA binding protein), the deviation of amino acid 

composition from globular protein (34.18) is less than that of TMB (39.89) and hence 
this protein is predicted as a non-TMB. On the other hand, for OutD protein, the 
deviation from TMB (16.09) is less than that from globular protein (23.70) and hence 
it is identified as an TMB.The amino acid composition based method could correctly 
identify 89% of the TMBs (334/377) and exclude 79% of globular proteins (531/674). 

Table 1. Steps to discriminate globular and outer membrane proteins in two typical proteins 

__________________________________________________________________
Residue N Comp σglob σTMB  N Comp σglob σTMB 
___________________________________________________________________________________ 
Adenovirus DNA-Binding Protein (1ADT)         OutD protein 
 Ala      10     11.11   2.64   2.16  54      8.31   0.16   0.64 
  Asp 4      4.44   1.53   1.47 40      6.15   0.18   0.24 
  Cys 1      1.11   0.28   0.64  1      0.15   1.24   0.32 
  Glu 7      7.78   1.46   3.00  31      4.77   1.55   0.01 
  Phe 5      5.56   1.65   1.88  21      3.23   0.68   0.45 
  Gly 3      3.33   4.49   5.21  46      7.08   0.74   1.46 
  His         4      4.44   2.18   3.19  3      0.46   1.80   0.79 
  Ile         1      1.11   4.60   3.66  35      5.38   0.33   0.61 
  Lys 7      7.78   2.02   2.85  28      4.31   1.45   0.62 
  Leu 10     11.11   2.63   2.33  53      8.15   0.33   0.63 
  Met 4      4.44   2.23   2.88  19      2.92   0.71   1.36 
  Asn 4      4.44   0.10   1.30  43      6.62   2.08   0.88 
  Pro 3      3.33   1.30   0.41  21      3.23   1.40   0.51 
  Gln 4      4.44   0.62   0.31  33      5.08   1.26   0.33 
  Arg 3      3.33   1.60   1.91  37      5.69   0.76   0.45 
  Ser 3      3.33   2.61   4.72  55      8.46   2.52   0.41 
  Thr 6      6.67   0.88   0.13  47      7.23   1.44   0.69 
  Val 6      6.67   0.35   0.09  64      9.85   2.83   3.09 
  Trp 2      2.22   0.78   0.98  6      0.92   0.52   0.32 
 Tyr 3      3.33   0.25   0.80  12      1.85   1.73   2.28 
 Total   34.18    39.89       23.70    16.09      
Discrimination       Globular protein    β-barrel membrane protein 
_________________________________________________________________________________ 
N: number of residues; σglob = |comp - comp(glob)|; σTMB = |comp – comp(TMB)|. 
 

Fig. 2. The binding pockets for diferric 
dicitrate in FecA. The hydrogen bonds 
are shown as dotted lines. 
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The dipeptides have more information than just amino acid composition and we 
observed an increase in accuracy. This information could correctly identify 95% of 
the TMBs and exclude 79% of the globular proteins (9). The performance of motifs is 
better to exclude globular proteins and the accuracies of identifying 377 TMBs and 
excluding 674 globular proteins are 95.8% and 82.2%, respectively (10). 

Further, we have analyzed different machine learning techniques for discriminating 
TMBs. These methods could discriminate a set of 1088 TMBs and globular proteins 
with the accuracy in the range of 89-92% using amino acid composition (11). We 
have also used a set of 49 amino acid properties for discrimination, which improved 
the accuracy up to 94% for the same set of proteins (12). Interestingly, this will also 
have the ability of correctly excluding 1612 proteins belonging to 30 major folds of 
globular proteins with the accuracy of 99% as seen in Figure 3. The inclusion of 
PSSM profiles enhanced the accuracy of discriminating TMBs (in a dataset of 206 
TMBs and 1045 non-TMBs obtained with less than 40% sequence identity) up to 
96.4% (13). 
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Fig. 3. The accuracy of excluding 30 major folding types of globular proteins. The SCOP 
classification (14) is used to denote the folding types. 

Table 2. Predictive performance of different methods for discriminating TMBs 
 ___________________________________________________________________________ 
 Method Accuracy (%) Reference 
 ___________________________________________________________________________ 
 
 Sequence alignment profile 80 [15] 
 Amino acid composition  (β-strand segments) 84 [16] 
 Amino acid composition (TMB and globular proteins) 87 [5] 
 Hidden Markov model and alignment profies 88 [17] 
 Hidden Markov model 88 [18] 
 Neural networks (amino acid composition) 91 [11] 
 Support vector machines (amino acid composition) 92 [19] 
 k-nearest neighbor 92 [20] 
 Support vector machines (amino acid and dipeptide compositions) 94 [19] 
 Neural networks (amino acid properties) 94 [12] 
 RBF network and PSSM profiles 96 [13] 
  ___________________________________________________________________________ 
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The comparison of statistical and machine learning techniques for discriminating 
TMBs is presented in Table 2. We noticed that the accuracy is remarkably higher with 
machine learning techniques than with statistical methods. Further, the statistical methods 
could correctly identify the TMBs whereas the performance of machine learning 
techniques is better for excluding globular and TMH proteins than identifying TMBs. 

3.3   Prediction of Membrane Spanning Segments 

We have developed a “rule based approach” for predicting transmembrane β-strands 
using three features, (i) preference of amino acid residues in membrane spanning β-
strands (conformational parameters), (ii) hydrophobic character and (iii) 
amphipathicity (21). A set of five primary rules have been designed to assign the 
priority of each residue to be in transmembrane β-strand and four secondary rules to 
pick up the membrane spanning segments. The primary rules for assigning the priority 

of each residue, i, are: β(i) > 1.0 (average conformational parameter), 1/6∑
=

6

1

)(
i

iβ  > 

1.0, Hp(i) >13.34 (average hydrophobicity), 1/6∑
=

6

1

)(
i

p iH  > 13.34 and 1/2∑
=

2

1

)(
i

p iH  

= 13.34  ± 0.5 (oscillating around the average hydrophobicity). If these conditions are 
satisfied the priority is one and zero, otherwise. The secondary rules for picking up 
the membrane spanning segments are: if any residue has the priority of 5, two 
consecutive residues have the priority of 4 or three consecutive residues have the 
priority of ≥3 there is a possibility of a transmembrane β-strand segment around the 
residue(s). Extend the length in both directions so that there may not be two 
consecutive low priority residues (less than 3) or a residue of zero priority. If the 
segment is longer than 20 residues cut into two smaller segments at the residue of 
highest hydrophobicity. This method is mainly applicable to bacterial porins and it 
could predict the membrane spanning segments with the accuracy of 82%. 

Further, we have set up a method using neural networks for predicting membrane 
spanning regions in TMBs. In this method, a three-layered neural network with one 
hidden layer has been used for predictions. Input layer reads the input information 
about a residue and its sequence neighbors from the neural network through a running 
window. Each residue is represented by a 21-bit vector (20 units for the amino acids 
and one unit for describing the terminal position of the protein). This input 
information is then fed forward through linear activation function, and the final signal 
received at the single unit of the output layer is transformed via a sigmoidal function 
to yield a value between 0 and 1. Our method could predict the membrane spanning 
regions of 13 TMBs with the accuracy of 73% using only the sequence information 
(22). In addition, our method would provide the probability of each residue to be in 
the transmembrane segment. 

3.4   Annotation of β-Barrel Membrane Proteins in Genomic Sequences 

We have developed a novel method for detecting TMBs in genomic sequences. We 
have followed the below mentioned steps for detecting TMBs as depicted in Figure 4: 
(i) identification of TMBs using the preference of residue pairs in globular, TMH and 
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TMBs, (ii) exclusion of TMH 
proteins using SOSUI, a prediction 
system for TMH proteins, (iii) 
elimination of globular/TMH 
proteins that show the sequence 
identity of more than 70% for the 
coverage of 80% residues with 
known structures in PDB and (iv) 
elimination of globular/TMH 
proteins that have the sequence 
identity of more than 60% with 
known sequences in SWISS-PROT. 
This method showed good 
agreement with experimental 
observations. An example is shown 
below for E. coli. 

The complete genome of E. coli 
has 4237 proteins and the comparison 
of residue pair preferences identified 
1036 proteins as TMBs (step i). 
Further, globular and TMH proteins 
were eliminated with steps (ii-iv) and 
finally we obtained 87 sequences as 
TMBs. Interestingly, all the 11 TMBs 
of known structures from E. coli have 
been identified by our method. 
Further, our approach could detect 
representative sequences in all the 15 
families of TMBs deposited in 
Transport Classification Database (23).     

We have developed a database, TMBETA-GENOME , for annotated TMBs in 
275 genomic sequences and it is available at http://tmbeta-genome.cbrc.jp/ 
annotation/. TMBETA-GENOME includes several features, such as, the service for 
detecting TMBs in genomic sequences using various methods, related references, 
statistics for the detected TMBs by different methods for each genome, details 
about all algorithms used to detect TMBs, relative links to other databases and a 
help page (24). An example is shown in Figure 5. In this figure the results are 
shown for Escherichia coli. K12 genome. The method, “New approach” has been 
selected for obtaining the annotated TMBs. This search picked up 87 entries and the 
TMBs identified by the new approach are shown with the identification number. In 
addition, the results obtained with other methods are also given for comparison. 
This database is a valuable resource for finding annotated TMBs in genomic 
sequences. 

Fig. 4. Pipeline for detecting TMB proteins in 
genomic sequences 
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Fig. 5. Annotated TMBs in E. coli using our approach and deposited in TMBETA-GENOME 
database 

4   Conclusions 

We have systematically analyzed the characteristic features of amino acid residues in 
the sequences of TMBs and globular proteins and revealed the differences between 
them. Utilizing this information, we have developed statistical and machine learning 
techniques for discriminating TMBs from other folding types of globular and 
membrane proteins. Further, rule based and neural networks methods have been 
proposed for identifying membrane spanning segments. A new approach has been 
developed to detect TMBs in genomic sequences and a data base has been set up for 
the annotated TMBs in genomes.  
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Abstract. Hydrophobicity has long been considered as one of the pri-
mary driving forces in the folding of proteins. We discuss here the evo-
lutionary average of the hydrophobicity profile in an aligned family of
proteins and found a patchy mean hydrophobicity profile. This is in con-
trast to Bastolla et al (2005b) results for the large superfamily of globular
proteins. The idea is to use singular value decomposition and cavity fil-
tering in order to remove the eigensequences burried in the evolutionary
noise

1 Introduction

It is well known that hydrophobicity is a major determinant of protein stability
and evolution. With respect to sequence-structure correlation, the evolutionary
average of hydrophobicity profiles of sequences with the same fold correlates
with principal eigenvector of fold’s contact matrix (PE) much strongly than
the hydrophobicity profile (HP) of its single sequence [1]. In the Structurally
Constrained Neutral (SCN) model of protein evolution [2,3,4] the correlation is
perfect (almost one), and yields

hs
evol ≡

20∑
a=1

πs
aha =

√
〈h2

evol〉 − 〈hevol〉2
(〈c2〉 − 〈c〉2) (cs − 〈c〉) + 〈hevol〉 , (1)

where hevol is the position specific evolutionary average of the HP, πs
a is the

position specific amino acid distribution at site s resulting from the evolutionary
process (a indicates one of the 20 amino acid types) and cs is the PE component
of the contact matrix of the family. Assuming this equation is the only relevant
condition, the amino acid distribution at site s is predicted to be the distribution
of maximal entropy [11] with mean given above , i.e.

πs
a =

exp[−βsha]∑20
a′=1 exp[−βsha′ ]

. (2)

The site specific Boltzmann parameters (’inverse temperature’) βs determine
the width of the amino acid distribution. The width parameter varies from site
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to site and measures the tolerance of site s to accept mutations over very long
evolutionary time. In principle it can catch external parameter dependence of
the distribution due to say temperature, regulatory effects, e.t.c.

In this paper we estimate the evolutionary average hydrophobicity sequence
from a set of aligned protein sequences from elastase family. The idea is to use
eigensequences related to the inter-species hydrophobicity sequence correlation
matrix to remove the evolutionary noise from the sequences and hence avoid
inspection of large database to compute the mean hydrophobicity. For example,
Bastolla et al. (2005a) used thousands of globular sequences from the PFAM,
the FSSP, and the SCN databases in order to compute the evolutionary mean
hydrophobicity profile. Since the aligned sequences are represented through hy-
drophobic profiles by quantifying each of the amino acids in the sequences using
for example Kyte and Doolittle hydropathy scale it can be viewed as multi-
dimensional heterogenous hydrophobicity sequences. We then use Singular Value
Decomposition (SVD) and cavity filtering in order to decorrelate and remove the
eigensequences burried in evolutionary noise. The average hydrophobicity profile
is then computed from the first few useful eigensequences corresponding to the
largest eigenvalues of the cross species hydrophobicity covariance matrix.

2 Dataset and Methods

2.1 Dataset

The dataset consists of L = 32 aligned sequences of length N = 247 (including
gaps) from elastase family. The sequences were located from a search in the NCBI
and SWISSPROT protein data banks. Elastase is a member of the large family of
serine proteinases which includes trypsin and chemotrypsin, and is synthesized
initially in the pancreas as an inactive precursor. The 3D structure of these
molecules has also abeen modeled at the department of chemistry, university of
Tromsø. The dataset can be obtained on request from us.

We represented the sequences through hydrophobic profiles by quantifying
each of the amino acids in the sequences using Kyte and Doolittle hydropathy
scale [7]. That is the hydrophobicity of residue a at position s in a sequence is
given by

Ha(s) = YT
a(s)f (3)

where Ya(s) = (0, 0, . . . , 1a(s), 0, . . . , 0) ∈ IR21 is a count vector for residue a1 =
{1, 2, . . . , 21} at site s and f is the hydrophobic index in Kyte and Doolittle. For
all the consecutive amino acids in sequence l we have

Hl = YT
l f (4)

where Yl = {Yl,a(s)}N
s=1 ∈ IR21×N is a dummy matrix that consists of N unit

count vectors. Hence H is L × N elastase sequences represented through hy-
drophobic profiles. Plot of hydrophobicity level of ela-pig (PDB:1qnj) is shown
in Figure 1.
1 Gaps were treated as if they were a 21st amino acid type.
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Fig. 1. Hydrophobicity profile of one of the elastase sequences,1QNJ, generated by
quantifying each of the amino acids in the sequence using Kyte and Doolittle hydropa-
thy scale

2.2 Estimating Average Hydrophobicity Profile (HP)

The problem of computing the average HPs from H can be considered as ex-
tracting mean hdrophbocity sequence from a noisy one2. We assume two types
of noise contributions in our data - one along the sequence chain (due to for
example the stochasticity of the folded protein chain) and the other across the
sequences (due to evolutionary noise). In order to decorrelate and remove the
eigensequences burried in evolutionary noise we eigen decompose (SVD - Singu-
lar Value Decomposition) the estimate of the noise covariance matrix Σ̂,

Σ̂ = UΛUT (5)

where U ∈ RL×L is an orthogonal matrix (i.e.,UTU = I), the columns of U form
an orthonormal basis for the HPs of the sequences and Λ = diag(λ1, λ2, . . . , λL)
is a diagonal matrix with entries λl, eigenvalues in decreasing order. The noise se-
quences are approximated by subtracting a smoothed (denoised) mean HP from
each of the observed HPs. We choose a deterministic gaussian ’cavity filtering’
procedure [10] due to local amino acid interactions along the protein sequence. It
has also the non-enhancement property of local extrema: values of local maxima
cannot increase and respective values of local minima cannot decrease [8]. The

2 We are presently developing a Boltzmann lattice approximation for discrete evolu-
tionary sequence noise and protein observables in an aligned phylogenetic protein
family.
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Fig. 2. Scree plot: A plot of eigenvalues λl, in decreasing order. The plot is used to
decide the number of eigensequences that are useful (eigensequences to the left of the
elbow or bend).

hydrophobicity profiles of sequences, H are then projected into new coordinates
to obtain the eigensequences

Q = HTU . (6)

The eigensequences due to evolutionary noise are then filtered out by using
the first K = 3 eigensequences. K is determined by the point at which the
remaining eigenvalues are relatively small and all about the same size. One way
to determine K, the number of eigensequences Q = [q1q2 . . .qK] to retain is by
use of a scree plot [6], a plot of λl (the eigenvalues in deccreasing order) versus
l. A scree plot for the HPs of elastases, H is shown in Figure 2. To determine
K, we look for an ‘elbow’ (bend) in the scree plot. The eigensequences whose
eigenvalues plot to the right of such ‘elbow’ are ignored since they are defined
here to be due to evolutionary noise. Thus the information in the scree plot
indicates that we extract the first three eigensequences.

The denoised eigensequences Q̂ are inverse projected to obtain a denoised
version Ĥ of H:

ĤT = Q̂T UT . (7)

The site specific average hydrophobicity profile of the aligned elastases is calcu-
lated by taking the mean of the denoised HPs of the sequences:

hs =
1
L

L∑
l=1

Ĥl,s = (h1, h2, . . . , hN ) . (8)
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Finally we perform cavity field on the average hydrophobicity profile. The cavity
fields is defined as [10]

hs =
∑
t�=s

Jstht (9)

where the couplings Jst are taken to be translational invariant gaussian. We
choose a deterministic cavity field since our Jst parameters are assumed to have
small variance compared to their mean. The cavity field describes the local in-
ternal filed which the amino acid ‘sees’.

The algorithm to estimate the site specific average hydrophobicity profile can
then be divided into seven main steps:

1. Estimate the noise hydrophobicity sequences by subtracting a cavity filtered
cross species mean HP from all the HPs of the sequences.

2. Compute the estimated noise covariance matrix Σ̂.
3. Diagonalize Σ̂ = UΛUT, where U ∈ RL×L is an orthogonal matrix (singular

vectors), Λ = diag(λ1, λ2, . . . , λL) are the eigenvalues. Decorrelate the HPs
of the sequences by projecting them into new coordinates to obtain the
eigensequences, i.e., HTU
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Fig. 3. (a) Hydrophobicity profiles of all the aligned elastase sequences. The hydropho-
bicity profiles were generated by assigning a hydrophobicity value to each of the amino
acids in each sequence using Kyte and Doolittle hydropathy scale. (b) SVD denoised
version of HPs of the sequences. The HPs were reconstructed using only the first three
useful eigensequences that account 82.4% of the total variance.
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4. Remove the eigensequences due to evolutionary noise by choosing the first
K useful eigensequences (use for example a scree plot to decide the number
of eigensequences to retain).

5. Reconstruct the hydrophobicity sequences, Ĥ from the denoised eigense-
quences (multiply by UT ).

6. Calculate the site specific average hydrophobicity profile from the denoised
HPs of the sequences using (8).

7. Perform cavity filtering on the average hydrophobicity profile using (9).

3 Results and Discussion

We demonstrated our method using the aligned protein sequences from elastase
family represented through their HPs (see Materials and Methods). Figure 3
shows plot of HPs of all the aligned elastase sequences and their SVD denoised
version. From the figure we see a lot of variations (evolutionary noise) in the
original sequences while in the second plot much of the evolutionary noise is
removed. Only the first three eigensequences that account 82.4% of the total
variace were used in the reconstruction. The site specific average hydrophobicity
profile was then estimated from the reconstructed denoised eigensequences (first

0 50 100 150 200 250
−5

0

5

Residue number

H
yd

ro
p

h
o

b
ic

ity

(a)

0 50 100 150 200 250
−3

−2

−1

0

1

2

3

4

Residue number

H
yd

ro
p

h
o

b
ic

ity

(b)

Fig. 4. (a) Site specific average HP estimated from the reconstructed denoised eigense-
quences. (b) Result of cavity ‘filtering’, short range interaction - three amino acid local
interactions along the mean HP sequence.
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three eigensequences) using equation 3. Finally cavity filtering was applied on
the average HP. Short range amino acid interactions (three local amino acid
interactions) along the sequence profile was used. Figure 4 shows plot of average
HP and its cavity filtered version. From Figure 4(a) we see that the estimated
average hydrophobicity profile is still patchy. This might be due to variation
along the sequences. We therefore used cavity filtering to smooth this variation
(see Figure 4(b)).

We have analyzed (not yet published) the correlation between this estimated
average hydrophobicity and average surface exposure of our proteins and found
that the correlation is stronger than when the average hydrophobicity is com-
puted by just averaging the HPs of the sequences or estimated using wavelet
based smoothing methods.

4 Conclusions and Further Work

In this paper, we developed a method to estimate average hydrophobicity se-
quence from a set of aligned sequences from one protein family. We tested this
method on aligned sequences from elastase family. The method has removed
the evolutionary noise effectively. We are still working further to test how effec-
tive the method is by analyzing the correlation between mean hydrophobicity
and surface-exposure or principal eigenvector of fold’s contact matrix for var-
ioius families. This mean profile can be improved if we for example use more
physico-chemical properties like charge, electrostatic interactions, e.t.c.

So far we have computed an estimate of a mean HP profile but our future aim
is to estimate the site specific Boltzmann paramters, βs from this mean HP. This
width parameter in principle can catch external parameter dependence of the
distribution due to for example temperature. So we think that this parameters
can be used to classify proteins within a family, for example identify significant
diferences between mesophilic and psychrophilic populations [13].
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Abstract. We have developed an online database APMA (Affymetrix Probe 
Mapping and Annotation) for interactive presentation, search and visualization 
of Affymetrix target sequences mapping and annotation <http://apma.bii.a-
star.edu.sg>. APMA contains revised genome localization of the Affymetrix 
U133 GeneChip initial (target) probe sequences. We designed APMA to use it 
as a filter before data analysis and data mining so that noise expression signals, 
false correlations and false gene expression patterns can be reduced. 
Discrepancies found in probeset annotation and target sequence mapping 
account for up to 30% of probesets, including about 25% of Affymetrix 
probesets derived from target sequences overlapped interspersed repeats and 
1.8% of original target sequences with erroneous orientation of the sequences. 
86% of U133 target sequences passed our quality-control filtering. 

Keywords: Affymetrix U133, database, target sequences, cross-hybridization, 
mapping, genome repeats, errors, classification, recognition, data mining. 

1   Introduction 

The increasing growth of the microarray researches demands high quality standards 
for microarray expression databases, description and annotation of probes and genes. 
One of the key problem facing microarray experiments is insufficient reliability of 
expression measurements due to sub-optimal probe design. The problem could 
originate from poor gene identification by the probe sequences, whose design may not 
consider the actual complexity of the human transcriptome. Poor quality control (QC) 
of microarray probes can also generate many hard statistical problems at data analysis 
level, starting from selection of differentially expressed genes and ending by 
identification of co-expressed and co-regulated genes.   

One of the widely accepted microarray technologies is provided by Affymetrix 
Corporation (http://www.affymetrix.com).  Our goal was to develop an algorithm and 
                                                           
* Corresponding author. 
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software for quality control and filtering of Affymetrix target sequences. We 
organized and stored the results of this work in the APMA (Affymetrix Probe 
Mapping and Annotation) database. Such database suggested is of reasonable 
practical interest of the users of Affymetrix microarrays.   

In situ synthesized oligonucleotide Affymetrix GeneChip uses a set (the so called 
probeset) of 11-20 oligonucleotide probes, each 25 bases long, to represent a gene or 
a gene transcript. The perfect match probe comes together with a mismatch probe 
designed to measure non-specific cross-hybridization. The expression level for a gene 
is a summary of the signal from the entire probeset. Affymetrix uses ~150-450 nt 
initial (target) sequences of genes for probes (and whole probeset) location.  

The problem of accurate Affymetrix target sequence annotation is related to the 
complexity of multiple “gene models” including unverified ESTs from public 
datasets. Reported re-identification of genes may affect 30-50% of probesets [1,2]. 
Recent papers [3,4,5,6] report re-evaluation of Affymetrix microarray probes using 
BLAST comparison of probe sequences to the complete human genome. In some 
cases, multiple probesets can specifically target a single genic sequence coding for 
protein. In other cases, however, a probeset is capable of hybridizing to more than one 
transcript (and provide uncertainty in transcript detection) [7].  

Selection of original target sequences is one of the key steps of probe design process. 
There are several basic quality control criteria for verification of the target sequence. 
The sequences should: (1) detect a unique locus in human genome, (2) match a single 
transcript without mutations (correct mapping); (3) correspond to the sequence from the 
transcribed strand of the genome at the locus (correct strand orientation of target 
sequence); (4) not overlap with any other non-gene sequence that could cross-hybridize 
or even be independently transcribed (segmental duplications, interspersed repeats); (5) 
correspond to mature RNA (not intronic sequences that are spliced).  

Unfortunately, these basic criteria have not been well controlled. Perhaps, this is 
the case because transcript databases are incomplete, contain erroneous sequences, 
and undergo continual growth and change. Figure 1 shows examples of poor designed 
Affymetrix target sequences.  

Fig. 1. Examples of problematic Affymetrix target sequences. Target sequence A.222120_at 
corresponds to ZNF764 gene and contains SINE and DNA repeat elements. Target sequence 
A.57516_at falls completely (95%) into repeat element (Charlie 8, DNA/MER1 type). The last 
probeset evidently has great potential for cross-hybridization.  
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Target sequence A.222120_at maps only one exon of ZNF764 gene (Fig. 1). It 
contains repeats (SINE and Alu) that could cause cross hybridization of probes. 
Target sequence A.57516_at overlap DNA/MER1 repeat by 95% and definitely has 
great potential for cross-hybridization and biased measuring of expression signal for 
this gene. 

In our previous studies [8,9], we have developed software for automatic annotation 
and quality control of U133A and U133B targets sequences.  In this work, we focus 
on data basing, QC of  target sequences U133 Plus 2.0 GeneChip and using  these 
tools for characterization of erroneous patterns in target sequences and expression 
data sets. We use BLAT program for target sequence mapping to check 
correspondence of probesets to annotated genes. We develop online database for 
interactive presentation, search, filtering and visualization of Affymetrix U133 Plus 
2.0 target sequences and their mapping and annotation. The database collects 
information on erroneous probesets and provides flexible filters for pre-processing 
expression data. Finally we use several large cancer cell expression data sets to 
estimate quality of unreliable target sequences and corresponding probesets. 

2   Methods 

Affymetrix sequence data for the U133A and U133B GeneChips were downloaded 
from the NetAffx web site (http://www.affymetrix.com/analysis/index.affx). These 
sequences, intended to represent genes, are referred to as initial target sequences of 
the Affymetrix probesets. We used BLAT search at 90% similarity level to match 
each Affymetrix target sequence to the genome. Then, we annotated overlaps with 
exonic region(s) of RefSeq, mRNA and spliced EST variants on the NCBI Build 35 
and 36.1 (hg17 and hg18) assemblies. Example of target sequences annotation in 
APMA is in Figure 2. 

Fig. 2. APMA database interface (http://apma.bii.a-star.edu.sg) 
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We mapped Affymetrix probesets to gene sequence blocks based on the initial 
target sequences, not based on the individual 25-mers in the probe sets.  

We checked for exonic repetitive elements using RepeatMasker. We constructed a 
table of repeats classified by family and repeat types (DNA, LTR, LINE, SINE, 
simple and low complexity repeats, etc.) indicating length of the Affymetrix target 
sequence covered by the each type of repeats.  

Large fraction of Affymetrix target sequences maps to a transcript on an opposite 
strand. Substantial numbers of mRNAs and ESTs in cis-antisense loci represent 
natural anti-sense transcripts (NAST) derived from the opposite strand of the given 
(usually protein coding) gene [10]. In order to distinguish the Affymetrix target 
sequences matching NAST from the Affymetrix target sequences having wrong 
orientation at non-NAST loci, we developed a pipeline and constructed a local United 
Sense-Antisense Pairs (USAP) database [11]. The database annotates and classifies 
SA pairs by three annotation tracks (RefSeq, mRNA and EST sequences) and stores 
the information about SA genes supported by Affymetrix target sequences.  

Expression data. To study functional usefulness of the problematic probes, we 
analyzed the expression patterns of Affymetrix probesets in 249 primary breast 
tumors (NCBI Gene Expression Omnibus (GEO) http://www.ncbi.nlm.nih.gov/geo/; 
data sets GSE4922). The cancer samples were split into groups by histologic grades 
corresponding to aggressiveness of breast cancer [12,13]. In addition, we used 
U133A&B expression data from several normal and cancerous human brain tissues 
(GEO data sets GDS1962), and expression profiles representing lung cancer cell lines 
(GEO ID: GSE5816). MAS5 normalization was applied [14]. Then we performed 
global mean normalization to ln(500), which provides better consistency for a large 
fraction of expressed genes across microarrays. 

Software. Our database interface is developed in Perl. For group comparison, Mann–
Whitney U-test statistics were used for continuous variables and one-sided Fisher’s 
exact test used for categorical variables (Statistica-6 and StatXact-6 software). We 
have also used SAM 3.1 (Statistical Analysis of Microarrays) software [15] to 
estimate the number of differentially expressed genes defined by Affymetrix 
probesets.  

3   APMA Database and Statistical Assessment of Probesets 
Quality 

The results of mapping (chromosome coordinates, orientation, details of overlapping 
with exons and repeats etc.) were stored in a local database associated with unique 
Affymetrix probesets ID (http://apma.bii.a-star.edu.sg/). The database has convenient 
user interface, search engine and visualization tools referring to external (Santa Cruz) 
and local (Singapore) versions of UCSC Genome Browser. The search engine allows 
to find annotation of Affymetrix ID by gene name or accession number. The interface 
is shown in Figure 3. 
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Fig. 3. Interface of the database search menu (http://apma.bii.a-star.edu.sg) 

3.1   Statistics of Problematic Groups of Target Sequences 

We believe that target sequences of purportedly human microarray probes which, by 
BLAT, are completely absent in the human genome (sequences to which we hereafter 
refer to as Tag0 sequences) and target sequences which match multiple loci in the 
genome (called Tag2, Tag3, etc. based on the number of their BLAT-matched loci) are 
sources of cross-hybridization effects in gene identification and should be excluded from 
analysis of microarray experiments. We checked BLAT mappings for all 44,692 
sequences on U133A and B microarrays, except service and control probesets [16]. 

We found: (i) 1212 (2.7%) initial target sequences which do not match any location 
in the human genome (Tag0 or mismatched sequences, see Tab. 1); (ii) 42708 
(95.5%) target sequences with a single reliable mapping (Tag1: reliable target 
sequences); (iii) 772 target sequences (1.7%) with multiple locations in the human 
genome (Tag2+). Tag2+ is defined as sum of Tag2, Tag3, Tag4,..., etc. Tag 0 and 
Tag2+ might cause noise and/or cross-hybridization signals.  

Table 1. Statistics of Affymetrix target sequence matches in human genome 

#matches #Affymetrix ID  Percentage Cumulative % 
tag0 1212 2.71 2.71 
tag1 42708 95.56 98.27 
tag2 450 1.01 99.28 
tag3 129 0.29 99.57 
tag4 67 0.15 99.72 
tag5+ 126 0.28 100 
Total 44692 100 100 
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Tag0 sequences are related mostly to mRNA and EST, but not to genomic DNA. 
These sequences were associated with poorly-designed target sequences, poorly-
annotated transcripts, and with nonhuman sequences which were mistakenly labeled 
as “human” in the GenBank. For instance, some of Tag0 were classified as “xeno-
sequence /nonhuman” (mouse, cow, pathogens, rat etc; 224340_at is mouse c-Myc 
with extra TGA insertion; 217283_at strongly maps mouse short stature homeobox; 
217255_at 100% is cow SQSTM1). Other probesets belong to small groups of poorly-
defined sequences (for instance, 222196_at falls to random (not assembled) 
chromosome parts). 

Standard assignment of Affymetrix target sequences to genome provided by UCSC 
Genome Browser using default BLAT parameters either does not define all target 
sequences or just skips them without any reference. Location of probesets could 
correspond to the mapping of genes, but the latter maybe not unique. (For example, 
target sequence for probeset 208303_s_at falls onto different chromosomes in hg18: 
X, Y following the mapping of CRLF2 (cytokine receptor-like factor 2 isoform 1). 
The CDS end of the gene is not complete. Another example is 207353_s_at probeset 
mapped to the unassembled part of chromosome 4 (chr4_random).  

We identified multiple genome locations of some extraordinary redundant probes 
(tag11+). For instance, probeset 81737_at has 22 different locations in human 
genome; probeset 213089_at has more 11 hits to human genome.  

3.2   Repeats in Tag1 Target Sequences 

Surprisingly, about 25% of target sequences are covered by mobile elements (repeats) 
abundant in the human genome such as Alu, LINE and LTR (Tab. 2).  

They might serve as a significant source of erroneous detection of expressed genes 
and cross-hybridization signals. 

Table 2. U133 Affymetrix target sequences containing genome repeats 

Set of repeats Repeat class # in U133A 
and U133B 

# in U133 
additional set 

Simple repeats Simple repeat, Low complexity 3233 468 
Short transposons (<300 bp)  DNA, SINE/Alu, SINE/MIR 4347 1578 
Long transposons (>300 bp) LINE/CR1, LINE/L1, LTR/ 

ERV1/ERVK/ERVL/MaLR 
5420 1915 

Non-transposons and 
satellites 

Other, RNA, rRNA, scRNA, 
Satellite, snRNA, srpRNA 

80 31 

3.3   Inversely Oriented Target Sequences 

We consider an Affymetrix target sequence as inversely oriented if it matches the 
opposite strand to any RefSeq, mRNA, or EST-supported gene. If a target sequence 
matches also any RefSeq or mRNA in the same strand then this sequence may refer to 
natural antisense transcripts (NAST), but not annotation errors. We developed a 
pipeline to distinguish annotation errors from sequences matching natural antisense 
transcripts. We considered a target sequence as misoriented relative to the intended 
gene (presented by RefSeq or mRNA ID) if: 
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1) it is aligned perfectly in complete genomic coordinates, block by block (the 
allowed shift is no more than 8 bp except for the leftmost and rightmost block) to the 
transcript mapped to the opposite DNA strand; 

2) the number of blocks RefSeq/mRNA blocks mapped to the genome was greater 
than one; 

3) there no any RefSeq gene in the same strand; 
4) if there are several perfectly matching mRNA transcripts in both strands target 

sequence matches the majority of GenBank mRNAs in wrong orientation, while there 
are none or only a single mRNA perfectly matching the Affymetrix target sequence 
blocks on the same strand. 

In total, 810 (1.8%) Affymetrix target sequences were defined as misoriented 
target sequences. This set was identified by manual curation and automatic 
comparison of blocks of Affymetrix target sequences with exons of RefSeq or 
mRNA sequences in opposite strand (Tab. 3). The number of Affymetrix target 
sequences misoriented relative to intended transcripts is larger than previously 
reported by Harbig et al. [1]. 

3.4   Classification of Different Categories of Problematic Affymetrix Target 
Sequences 

Tab. 3 shows the statistics of different categories of poorly-defined Affymetrix target 
sequences found using hg18 Assembly: Tag0, multiple genome matching Tag2+ 
(Tag2, Tag3, Tag4 and others) targets sequences, misoriented target sequences and 
the target sequences covered by genome repeats.  

This table shows that only about 86% (38511/44692) U133A&B target sequences 
could be useful in expression analysis. Our pipeline identified 13260 Affymetrix 
target sequences matching SA gene pair loci. These target sequences match the 
natural SA transcripts and should not be excluded from the analysis.  

Additionally, we have identified 810 erroneously oriented Affymetrix target 
sequences, which should be excluded from functional (expression) analysis.  

Table 3. Joint classification of problematic Affymetrix GeneChip U133A&B target sequences 

Target sequences groups Non-redundant # of 
probesets 

% 

Total # of non-Tag1 sequences, including: 1984 4.43 
    Tag0 1212 2.71 
    Tag2+ 772 1.72 
Total # of misoriented target sequences 810 1.81 
Total # of target sequences overlapped with repeats  
including: 

3387 7.57 

    overlap 80-100% of target sequence length 761 1.7 
Total # of useful Tag1 sequences 38511 86.16 
TOTAL # of Affymetrix target sequences 44692 100 
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3.5   Comparison of Mean Gene Expression Levels Detected by Different Classes 
of Problematic Target Sequences 

We compared average gene expression levels in the groups of problematic target 
sequences: tag0, multiple loci matching, misoriented relative to given gene, and target 
sequences covered by repeats by 40-60%, 60-80%, 80-100% of target sequence length 
(in non-overlapping intervals of percents, i.e. [40;60), [60;80) and [80-100]) (Fig. 4). 
We used a large set of expression data of genetically and clinically well-separated 
breast cancer sub-types [12] for analysis of statistical parameters of the probesets. We 
designated Affymetrix probesets derived from target sequences without any 
complication or covered by genome repeats by less than 20% to 40% of target 
sequence length as "Normal". Fig. 4 shows strong negative trend of the mean values 
of hybridization signal from Normal to misoriented target sequences.  
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Fig. 4. Population average expression signal of probesets associated with problematic groups of 
Affymetrix target sequences. Columns present mean values in histologic Grade I of breast 
cancer samples for the probesets groups, line with diamonds presents corresponding coefficient 
of variation (CV).  

Misoriented and multiple-matching target sequences provide the poorest probesets 
in comparison with other problematic sequence groups. This trend is exhibited by the 
lower average expression signal and by the larger coefficient of variation (CV). 

We found that simple repeats and low-complexity sequences do not affect the 
ability of probesets to discriminate tumor-type specific signals [9]. However, as a 
general trend, target sequences with more genome repeats have progressively 
worsening proportions among differentially expressed genes in cancer tissue type 
comparison, especially for longer repeats (LTR and LINE) and for larger sequence 
span coverage of the target sequences.  

Comparison of the numbers and values of correlation coefficients of probesets 
derived from multiple matching target sequences with random samples from Normal 
group reveals similarly poor quality of these problematic groups. Our analysis of 
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expression data for cancer samples reveals that larger number of genome loci for the 
target sequence correlates with 1) higher expression noise (defined by CV-value), 
2) lower average signal level, and 3) higher number of spurious positive correlations. 
This is what we would expect due to nonspecific hybridization signals. 

3.6   Comparison of U133A, U133B and Additional to U133 Plus2.0 GeneChips 

Figure 5 shows that the averages of signal intensity values for brain cancer cell 
samples differ for probesets from Normal group and probesets from “problematic” 
group. Problematic probesets have lower signals and therefore are enriched in the left 
(noisy-like) part of the empirical signal intensity frequency distribution (Fig. 5). 
Inversely, the signal value of Normal probesets is much enriched in the right part of  
the empirical signal intensity frequency distribution. 

We have observed that the microarrays U133A and U133B show a markedly 
different quality of the target sequences and, respectively, of the hybridization signals 
of the probesets presented on these microarrays. Tab. 5 shows that the fraction of 
target sequences that passed our QC (quality control, i.e. Tag1, correct orientation on 
chromosome, and repeat coverage is less than 40% of target sequence length) on 
microarray U133A is larger in comparison to microarray U133B. In general, 
microarray U133A is better annotated and as we have showed exhibits higher 
expression level of genes than microarray U133B. We have observed 89.3% Normal 
target sequences for microarray U133A and 83% of such sequences for microarray 
U133B. Additional set (9983 probesets) to microarray U133 Plus 2.0 exhibits 79.6% 
of such non-problematic target sequences). 
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Fig. 5. Comparison of the histograms of signal intensity value for unfiltered (diamond), Normal 
filtered (square) and problematic (circle) probesets demonstrate systematic shift of the 
frequency of signal intensity value. Normal probesets filtered out based on quality control (QC) 
criteria show relatively higher signals.  MAS5 normalized and log-transformed signals of brain 
cancer cell data set were used. 
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Table 4. Target sequences passed QC for U133A, U133B and additional to U133 Plus 2.0 
microarrays 

 # target 
sequences 

# target sequences 
passed QC 

target sequences 
passed QC, % 

Common for A and B chip 100 98 98.0 
U133A 22115 19753 89.3 
U133B 22477 18660 83.0 
Additional to U133 Plus 2.0 9983 7942 79.6 

 
There are many examples of significant distinguishing expression levels of 

probesets, which corresponding to the same gene but are expressed differently on 
these three U133 sets. The poor-quality target sequences used to design the probesets 
(designed often using incomplete mRNAs or unreliable EST sequences) should be 
excluded from the gene expression analysis. Our database allows making this 
procedure automatically. 

4   Discussion and Conclusion 

Careful analysis of microarray probe design should be an obligatory component of 
MicroArray Quality Control (MACQ) project [17] initiated by the FDA USA in order 
to provide quality control tools to researchers of gene expression profiles and to 
translate the microarray technology from bench to bedside. In particular, identifying 
and filtering of unreliable target sequences are important data preprocessing steps 
before any analysis of microarray expression data. Such search and making decision 
strategy may provide essential improvement in selection of differentially expressed 
genes, gene clustering and pattern recognition of genetic and clinical subtypes, and in 
construction of realistic co-regulatory expression networks.  

In this study, we have i) revised genome localization of the Affymetrix U133 
GeneChip initial target sequences, ii) evaluated the impact of erroneous and poorly 
annotated target sequences on the quality of gene expression data and iii) developed 
an online database for interactive presentation, search and visualization of Affymetrix 
target sequences mapping and annotation. This DB contains revised genome 
localization of the Affymetrix U133 GeneChip initial (target) probe sequences.  

In many cases, the spurious correlations can lead to serious erroneous 
interpretation of the microarray results, as was shown in [18]. In performing an 
analysis of overlaps of Affymetrix target sequences with repeat elements, we have 
quantitatively demonstrated that the number of positive correlation coefficients 
between genes in such a type of problematic target sequence group increases as repeat 
coverage increases. These extra false correlations in the groups do not correspond to 
real gene co-regulation but solely to bad design of target sequences. Similarly, Tag2+ 
and Tag0 can be also a significant source of spurious correlations of signals from 
probesets (and representative genes) on microarrays. Nevertheless researchers use 
such correlations without suitable quality control. Moreover, some gene discovery 
methodologies, such as hierarchical clustering, principal component analysis and 
gene-networking use the correlation coefficient of expression signal values between 
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probesets as basic information. Other analyses, for example, general linear models, 
also are ultimately based on correlation-like principles. 

Multiple-locus, nonhuman, misoriented, and nonspecific targets sequences are a 
significant attribute of the U133 GeneChip probesets. The ability of probesets to 
hybridize to more than one gene product can lead to false positives when analyzing 
gene expression data. The apparent artifacts in the data exist because the original 
target sequence annotations do not accurately correspond to the transcripts. 
Identification and removal of inaccurate target sequences can significantly improve 
specificity of GeneChip technology. 

We summarize that about 14% of U133 A&B Affymetrix probesets have been 
designed based on erroneous target sequences. This fraction can be further classified 
as follows: 

2.7% of target sequences do not reliably match any location in the human genome;  
Another 1.7% of the sequences have multiple locations (up to 10 times and more); 
About 7.5% of the remaining Affymetrix target sequences overlap repeat elements 

abundant in the human genome completely including target sequences located in 
transposons or over more than 40% of the target sequence length, yielding noisy 
expression signal; 

1.8% of Affymetrix probesets have wrong orientation relative to the transcript they 
are alleged to detect. 

The concrete number of the filtered out problematic Affymetrix probesets could be 
refined depending on the stringency of criteria. Despite numerous wrongly designed 
and poorly annotated target sequences, we argue that Affymetrix U133 GeneChip 
could show reproducible and quantitative hybridization signals. However, about 14% 
of these signals need filtering based on our expression analysis criteria, genome re-
annotation and statistical methods described in this paper. We suggest restricting data 
analysis and data mining of Affymetrix U133 probesets within the Normal artifact-
free Tag1 probes with minimal repeat content. 

In conclusion, we suggest that the development of APMA DB and computational 
QC tools could be used as an integrative filter system to be applied before data 
analysis and data mining in order to reduce noise expression signals, false correlations 
and false gene expression patterns. 
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Abstract. DNA Microarray technology allow us to identify cancerous
tissues considering the gene expression levels across a collection of related
samples.

Several classifiers such as Support Vector Machines (SVM), k Near-
est Neighbors (k-NN) or Diagonal Linear Discriminant Analysis (DLDA)
have been applied to this problem. However, they are usually based on
Euclidean distances that fail to reflect accurately the sample proximi-
ties. Several classifiers have been extended to work with non-Euclidean
dissimilarities although none outperforms the others because they mis-
classify a different set of patterns.

In this paper, we combine different kind of dissimilarity based classi-
fiers to reduce the misclassification errors. The diversity among classifiers
is induced considering a set of complementary dissimilarities for three
different type of models. The experimental results suggest that the algo-
rithm proposed helps to improve classifiers based on a single dissimilarity
and a widely used combination strategy such as Bagging.

1 Introduction

DNA Microarray technology allow us to monitor the expression levels of thou-
sands of genes simultaneously across a collection of related samples. This tech-
nology has been applied particularly to the prediction of different type of cancer
with encouraging results [12].

A large variety of machine learning techniques have been proposed to this aim
such as Support Vector Machines (SVM) [10], k Nearest Neighbors [9] or Diago-
nal Linear Discriminant Analysis (DLDA) [9]. However the algorithms considered
in the literature rely frequently on the use of the Euclidean distance that fails
often to reflect accurately the proximities among the sample profiles [8,16,19].
The classifiers mentioned above have been extended to work with non-Euclidean
dissimilarities [22]. In spite of this, the resulting algorithms misclassify a different
set of patterns and fail to reduce significantly the errors. This can be explained
because each dissimilarity reflects different features of the data and they induce
different type of errors.
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Several authors have pointed out that combining non-optimal classifiers can
help to reduce particularly the variance of the predictor [17,24]. In order to
achieve this goal, different versions of the classifier are usually built by sampling
the patterns or the features [5]. Nevertheless, in our application, this kind of
resampling techniques reduce the size of the training set. This may increase the
bias of individual classifiers and the error of the combination [24].

In this paper we build the diversity of classifiers considering three different
kinds of models such as SVM, k-NN and DLDA. The diversity is increased
considering a set of complementary dissimilarities for each model. The classifiers
induced will take advantage of the whole sample avoiding the bias introduced by
resampling techniques such as Bagging. In order to incorporate non-Euclidean
dissimilarities the base classifiers are modified in an appropriate way. Finally,
the classifiers are aggregated using a voting strategy [17]. The method proposed
has been applied to the prediction of different type of cancer using the gene
expression levels with remarkable results.

This paper is organized as follows. Section 2 introduces the dissimilarities con-
sidered to build the diversity of classifiers. Section 3 comments how the classifiers
can be extended to work from a dissimilarity matrix. In section 4 we present our
combination strategy. Section 5 illustrates the performance of the algorithm in
the challenging problem of gene expression data analysis. Finally, section 6 gets
conclusions and outlines future research trends.

2 Dissimilarities for Gene Expression Data Analysis

An important step in the design of a classifier is the choice of a proper dissimi-
larity that reflects the proximities among the objects. However, the choice of a
good dissimilarity is not an easy task. Each measure reflects different features of
the data and the classifiers induced by the dissimilarities misclassify frequently
a different set of patterns. Therefore no dissimilarity outperforms the others.

In this section, we comment shortly the main differences among several dissim-
ilarities proposed to evaluate the proximity between cellular samples considering
the gene expression levels. For a deeper description and definitions see [8,16,11].

The Euclidean distance evaluates if the gene expression levels differ signifi-
cantly across different samples. An interesting alternative is the cosine dissimila-
rity. This measure will become small when the ratio between the gene expression
levels is similar for the two samples considered. It differs significantly from the
Euclidean distance when the data is not normalized by the L2 norm.

The correlation measure evaluates if the expression levels of genes change
similarly in both samples. Correlation based measures tend to group together
samples whose expression levels are linearly related. The correlation differs sig-
nificantly from the cosine if the means of the sample profiles are not zero. This
measure is sensitive to outliers. The Spearman rank dissimilarity is less sensi-
tive to outliers because it computes a correlation between the ranks of the gene
expression levels. An alternative measure that helps to overcome the problem
of outliers is the Kendall-τ index which is related to the Mutual Information
probabilistic measure [11].
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Due to the large number of genes, the sample profiles are codified in high
dimensional and noisy spaces. In this case, the dissimilarities mentioned above
are affected by the ‘curse of dimensionality’ [1,20]. Hence, most of the dissimilar-
ities become almost constant and the differences among dissimilarities are lost
[15]. To avoid this problem, it is recommended to reduce the number of features
before computing the dissimilarities.

3 Dissimilarity Based Classifiers

Classical Support Vector Machines (SVM) [25] and Diagonal Linear Discriminant
Analysis (DLDA) [9] are not able to work directly from a dissimilarity matrix. In
this section, the classical SVM algorithm is extended to work from a dissimilarity
matrix by defining a kernel of dissimilarities. Next DLDA is adapted following
a different approach by embedding the patterns in a Euclidean space.

The SVM algorithm looks for a linear hyperplane f(x; w) = wT x that ma-
ximizes the margin γ = 2/‖w‖2. γ determines the generalization ability of the
SVM. The slack variables ξi allow to consider classification errors. The figure 1
illustrates the meaning of the SVM parameters.

The hyperplane that minimizes the prediction error is given by the following
optimization problem [25]:

minimumw,{ξi} < w, w > +C

n∑
i=1

ξ2
i (1)

subject to yi(< w, xi > +b) ≥ 1 − ξi i = 1, . . . , n

ξi ≥ 0 i = 1, . . . , n

where C is a regularization parameter that achieves a balance between the em-
pirical error and the complexity of the classifier. The optimization problem can

ξi

yk ( < w, xk > + b ) = +1

xk

xl

ξj

γ
γ

l ( < w, x  > + b ) = −1ly

(Slack variables)

Class 1

Class 2

Support Vectors

Margin

Fig. 1. Scheme of the hyperplane generated by the SVM algorithm for a non-linearly
separable problem
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be solved efficiently in dual space and the discriminant function can be expressed
exclusively in terms of scalar products,

f(x) =
∑
αi>0

αiyi〈x, xi〉 + w0 (2)

The SVM algorithm can be easily extended to the non-linear case substituting
the scalar products by a Mercer kernel [25].

Non-Euclidean dissimilarities can be incorporated into the SVM algorithm by
defining a kernel of dissimilarities [22,23]. Next we detail the idea.

Let d be a dissimilarity [6] and R = {p1, . . . , pn} a subset of representatives
drawn from the training set. Define the mapping D(z, R) : F → R

n as:

D(z, R) = [d(z, p1), d(z, p2), . . . , d(z, pn)] (3)

This mapping define a dissimilarity space where feature i is given by d(., pi).
The set of representatives R determine the dimensionality of the feature space.

The choice of R is equivalent to select a subset of features in the dissimilarity
space. Due to the small number of training samples in our application we have
considered the whole sample as a representative set. It has been suggested in
the literature that selecting a smaller subset of representatives does not help to
improve the resulting classifier [22].

Once the patterns have been represented in the dissimilarity space, a kernel
of dissimilarities can be defined as:

Kij = 〈D(xi, R), D(xj , R)〉 (4)

where 〈., .〉 denotes the scalar product in the feature space. Thus, for the linear
SVM the kernel matrix is written as K = DDT . This matrix is positive definite
and keeps the nice properties of the optimization problem in the original SVM
algorithm.

The DLDA is a variant of the Linear Discriminant Analysis (LDA) that con-
siders diagonal and constant covariance matrices along the classes [9]. However,
in order to apply this technique, a vectorial representation of the data should
be obtained. To this aim, we follow the approach of [22]. First, the dissimilari-
ties are embedded into an Euclidean space such that the inter-pattern distances
reflect approximately the original dissimilarity matrix. Next, the test points are
added to this space via a linear algebra operation. Finally the DLDA is applied
considering the vectorial representation obtained.

We comment briefly the mathematical details of the embedding operation.
Let D ∈ R

n×n be the dissimilarity matrix made up of the object proximities
for the training set. A configuration in a low dimensional Euclidean space can
be found via a metric multidimensional scaling algorithm (MDS) [6] such that
the original dissimilarities are approximately preserved. Let X = [x1 . . . xn]T ∈
R

n×p be the matrix of the object coordinates for the training patterns. Define
B = XXT as the matrix of inner products which is related to the dissimilarity
matrix via the following equation:

B = −1
2
JD(2)J , (5)
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where J = I− 1
n11T ∈ R

n×n is the centering matrix, I is the identity matrix and
D(2) = (δ2

ij) is the matrix of the square dissimilarities for the training patterns.
If B is positive semi-definite, the object coordinates in the low dimensional
Euclidean space R

k can be found through a singular value decomposition [6,13]:

Xk = VkΛ
1/2
k , (6)

where Vk ∈ R
n×k is an orthogonal matrix with columns the first k eigen-vectors

of XXT and Λk = diag(λ1 . . . λk) ∈ R
k×k is a diagonal matrix with λi the i-th

eigenvalue. Several dissimilarities introduced in section 2 generate inner product
matrices B non semi-definite positive. Fortunately, the negative values are small
in our application and therefore can be neglected [6] without losing relevant
information about the data.

Once the training patterns have been embedded into a low dimensional Eu-
clidean space, the test pattern can be added to this space via a linear projection
[22]. Next we comment briefly the derivation.

Let Xk ∈ R
n×k be the object configuration for the training patterns in R

k

and Xn = [x1 . . . xs]T ∈ R
s×k the matrix of the object coordinates sought for

the test patterns. Let D
(2)
n ∈ R

s×n be the matrix of the square dissimilarities
between the s test patterns and the n training patterns that have been already
projected. The matrix Bn ∈ R

s×n of inner products among the test and training
patterns can be found as:

Bn = −1
2
(D(2)

n J − UD(2)J) , (7)

where J ∈ R
n×n is the centering matrix and U = 1

n1T1 ∈ R
s×n. The derivation

of equation (7) is detailed in [22]. Since the matrix of inner products verifies

Bn = XnXT
k (8)

then, Xn can be found as the least mean-square error solution to (8), that is:

Xn = BnXk(XT
k Xk)−1 , (9)

Given that XT
k Xk = Λk and considering that Xk = VkΛ

1/2
k the coordinates for

the test points can be obtained as:

Xn = BnVkΛ
−1/2
k , (10)

which can be easily evaluated through simple linear algebraic operations.

4 Combination of Dissimilarity Based Classifiers

In this section we introduce our ensemble of classifiers to reduce the errors and
comment briefly the related work.

Our method builds the diversity of classifiers considering three different kind
of models such as SVM, k-NN and DLDA. To increase the diversity among
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Fig. 2. Aggregation of classifiers using a voting strategy. Bold patterns are misclassified
by a single hyperplane but not by the combination.

classifiers we have considered several dissimilarities introduced in section 2. Each
dissimilarity reflects different features of the data and the resulting classifiers will
produce different errors. Thus, the combination will improve the performance of
classifiers based on single dissimilarity [5,18]. Besides, the diversity of classifiers is
generated considering the whole training sample. In this way, we avoid to reduce
the size of the training set which may induce bias in the individual classifiers.
Notice that the combination strategies are not able to reduce the bias of single
classifiers [24].

Figure 2 shows in an intuitive way how the combination of classifiers reduces
the misclassification errors. For instance bold patterns are assigned to the wrong
class by one classifier but using a voting strategy the patterns will be assigned
to the right class.

Hence, our combination algorithm proceeds as follows: First, the set of comple-
mentary dissimilarities introduced in section 2 are computed. As we mentioned
earlier each classifier incorporates the dissimilarities in a different way. For the
SVM algorithm, the kernel of dissimilarities is computed and the optimization
problem is solved in the usual way. k-NN is able to work directly from a dissi-
milarity matrix but to avoid the ’curse of dimensionality’ and to increase the
diversity among dissimilarities it is recommended to reduce previously the num-
ber of features. For the DLDA algorithm, the dissimilarities should be embedded
in an Euclidean space via a Multidimensional Scaling algorithm. The ensemble
of classifiers is aggregated by a standard voting strategy [17]. The diagram 1
shows the steps of the algorithm.

A related technique to combine classifiers is the Bagging [5,3]. This method
generates a diversity of classifiers considering several bootstrap samples as train-
ing sets. Next, the classifiers are aggregated using a voting strategy. Nevertheless
there are three important differences between Bagging and the method proposed
in this section.

First, our method generates the diversity of classifiers by considering the whole
sample. Bagging trains each classifier using around 63% of the training set. In
our application the size of the training set is very small and neglecting part of
the patterns may increase the bias of each classifier. It has been suggested in
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Algorithm 1. Aggregation of classifiers based on multiple models and dissimilarities

1: For each measure compute the dissimilarity matrix
2: Compute the kernel of dissimilarities using equation (4) for the SVM algorithm
3: Embed each dissimilarity into an Euclidean space through equation (6) for DLDA

algorithm
4: Train the classifiers for each dissimilarity
5: Combine the different models using a voting strategy
6: Evaluate the ensemble by ten-fold cross-validation. Test points are embedded for

DLDA algorithm using equation (10)
7: End

the literature that Bagging does not help to reduce the bias [24] and so, the
aggregation of classifiers will hardly reduce the misclassification error.

A second advantage of our method is that it is able to work directly with a
dissimilarity matrix.

Finally, the combination of several dissimilarities avoids the problem of choo-
sing a particular dissimilarity for the application we are dealing with. This is a
difficult and time consuming task.

5 Experimental Results

In this section, the ensemble of classifiers proposed is applied to the identification
of cancerous samples using Microarray gene expression data.

Three benchmark gene expression datasets have been considered. The first one
consisted of 72 bone marrow samples (47 ALL and 25 AML) obtained from acute
leukemia patients at the time of diagnosis [13]. The RNA from marrow mononu-
clear cells was hybridized to high-density oligonucleotide microarrays produced
by Affymetrix and containing 6817 genes. The second dataset consisted of 49
samples from breast tumors [26], 25 classified as positive to estrogen receptors
(ER+) and 24 negative to estrogen receptors (ER-). Those positive to estrogen
receptors require a different treatment. The RNA of breast cancer cells were
hybridized to high-density oligonucleotide microarrays produced by Affymetrix
and containing 7129 genes. Finally the third dataset consists of 40 tumor and 22
normal colon samples, analyzed with an Affymetrix oligonucleotide array com-
plementary to more than 6,500 human genes. The number of genes was reduced
in the original dataset to 2000 [2].

Due to the large number of genes, samples are codified in a high dimensional
and noisy space. Therefore, the dissimilarities are affected by the ’curse of di-
mensionality’ and the correlation among them becomes large [20]. To avoid this
problem and to increase the diversity among dissimilarities we have reduced
aggressively the number of genes using the standard F-statistic [11]. The num-
ber of genes considered for SVM and DLDA are 14% while for k-NN the number
of genes kept is 3% because this technique is more sensible to noise.

The dissimilarities have been computed without normalizing the variables
because as we have mentioned in section 2 this operation may increase the cor-
relation among them.
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Fig. 3. Curve of eigenvalues for the Multidimensional Scaling algorithm and the χ2

dissimilarity

The algorithm chosen to train the Support Vector Machines is C-SVM. The C
regularization parameter has been set up by ten fold-crossvalidation [21,4]. We
have considered linear kernels in all the experiments because the small size of the
training set in our application favors the overfitting of the data. Consequently
error rates are smaller for linear kernels than for non linear ones.

The number of neighbors for k-NN algorithm is estimated by cross-validation.
Before applying DLDA the dissimilarities should be embedded in an Euclidean

space using a Multidimensional Scaling algorithm. An important parameter is
the dimensionality of this space generated by the first eigen-vectors of the inner
product matrix (5). The number of eigenvectors considered is determined by the
curve of eigenvalues.

Figure 3 shows the eigenvalues for the breast cancer data and the χ2 dissimi-
larity. The first eleven eigenvalues account for 85% of the variance. Therefore,
they preserve the main structure of the data.

The algorithms have been evaluated considering the global errors and the false
negative errors. Both have been estimated by ten-fold cross-validation which
gives good experimental results for the problem at hand [21].

Table 1 shows the experimental results for the best single classifier for each
technique. Table 2 compares the method proposed with Bagging, introduced in
section 3. Both, Bagging and the best classifiers based on a single dissimilarity
for each model have been taken as a reference.

From the analysis of tables 2 and 2, the following conclusions can be drawn:

– The dissimilarity that minimizes the error depends strongly on the classifier
and on the particular dataset considered. No dissimilarity outperforms the
others for a wide range of models and datasets. Hence the choice of a proper
dissimilarity is not an easy task for human experts.
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Table 1. Empirical results for the best single classifier for each technique

Technique Datasets Error % False negative %

SVM (Correlation) Golub 6.94% 2.77%
SVM (Tau) Breast 6.12% 2.04%
SVM(Correlation) Colon 14.5% 6.45%

K-NN (Tau) Golub 1.38% 1.38%
K-NN(Tau) Breast 8.16% 2.04%
K-NN (Cosine) Colon 12.9% 4.83%

DLDA (Tau) Golub 2.77% 1.38%
DLDA(Spearman) Breast 8.16% 2.04%
DLDA (Euclidean) Colon 11.29% 4.83%

Table 2. Empirical results for the combination of classifiers. The Bagging technique
has been taken as reference.

Technique Datasets Error % False negative %

Golub 8.33% 6.94%
Bagging (SVM) Breast 6.12% 2.04%

Colon 12.9% 4.83%

Golub 5.55% 5.55%
Bagging (k-NN) Breast 14.28% 6.12%

Colon 14.51% 9.67%

Golub 6.94% 4.16%
Bagging (DLDA) Breast 14.28% 2.04%

Colon 11.29% 3.22%

Golub 1.38% 1.38%
Combination Breast 4.08% 2.04%

Colon 11.2% 3.22%

– The combination strategy proposed outperforms significantly the misclassi-
fication errors of the best single classifiers. In particular, the ensemble of
classifiers improves significantly the SVM algorithms for the three problems
considered. False negative errors are particularly reduced in Golub and Colon
datasets. We also report that our method improves the best k-NN classifier
for Breast and Colon that are the most complex according to the literature.
Finally, DLDA is also improved for Golub and Breast Cancer.

– The ensemble of classifiers proposed improves a widely used combination algo-
rithm such as Bagging. Both kind of errors are particularly reduced for Golub
and Breast Cancer. This result supports the idea that our algorithm performs
better than the resampling techniques when the sample size is small.

6 Conclusions and Future Research Trends

In this paper, we have proposed an ensemble of classifiers based on a diversity
of models and dissimilarities. Our approach aims to reduce the misclassification
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error of classifiers based solely on a single measure. The algorithm has been
applied to the classification of cancerous samples using gene expression data.

The experimental results suggest that the method proposed improves the
misclassification error of classifiers based on a single dissimilarity. We also report
that our method compares favorably with a widely used combination algorithm
such as Bagging.

As future research trends, we will try to extend the method proposed to
improve clustering algorithms.
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Abstract. Many advanced machine learning and statistical methods have 
recently been employed in classification of gene expression measurements. 
Although many of these methods can achieve high accuracy, they generally 
lack comprehensibility of the classification process. In this paper a new method 
for interpretation of small ensembles of classifiers is used on gene expression 
data from real-world dataset. It was shown that interactive interpretation 
systems that were developed for classical machine learning problems also give 
a great range of possibilities for the scientists in the bioinformatics field. 
Therefore we chose a gene expression dataset discriminating three types of 
Leukemia as a testbed for the proposed Visual Interpretation of Small 
Ensembles (VISE) tool. Our results show that using the accuracy of ensembles 
and adding comprehensibility gains not only accurate but also results that can 
possibly represent new knowledge on specific gene functions.  

Keywords: gene expression analysis, machine learning, decision trees. 

1   Introduction 

Gene expression analysis is a novel technique that in contrast to measurement of a 
single gene transcription enables measurement of all genes in an organism at once. 
Finding combinations of genes whose expression levels distinguish different groups 
of diseases is a complex task that is usually solved by different machine learning or 
statistical algorithms. While most of the algorithms gain very accurate results in 
classification of gene expression samples, there is still very limited number of 
algorithms that can offer a good interpretation of the results that were gained using 
advanced machine learning techniques.   

Methods like bagging, boosting and random forests, which combine decisions of 
multiple hypotheses, also called ensemble methods, are some of the strongest existing 
machine learning methods. Ensemble methods are learning algorithms that build a set 
of classifiers which are used to classify new instances by combining their predictions. 
It was shown that ensembles clearly outperform the single classifiers in terms of 
classification accuracy [1-5]. 

One of the main drawbacks of ensemble classifiers is weak comprehensibility of 
the produced classification models. Many times it is possible to convert all single 
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models from an ensemble to a set of rules, but such rule sets quickly become too 
complex to be comprehensible. Main scheme for such methods is rule extraction, that 
is, symbolic rules are extracted from the ‘black-box’ model. Most usual method is 
simple rule extraction from all components of a classification model that is followed 
by aggregation of the extracted rules. One of first such systems was presented by 
Setiono in [5], where the neural network is pruned and the outputs of hidden units are 
discretized. The rule extraction algorithm is executed iteratively for each sub-network 
constructed from hidden units with many outputs. Sometimes this process can be even 
simpler – e.g. when working with decision tree (DT), rules can be extracted directly 
from the branches of a tree. 

Another option when improving the comprehensibility of classification process is 
introduction of classification visualization. One of the first papers where visualization 
of high-dimensional classifiers is presented was written by Melnik [6], where visual 
interpretation of neural networks is described. An extensive work in visualization of 
multiple and single DTs that also includes their interpretation was done by Urbanek in 
[7]. He presents a tool for interactive visual interpretation of DT forests. Another 
paper by Frank and Witten [8] presents a technique that uses a two-dimensional 
visualization based on class probability estimates. All above mentioned papers 
suggest that visual interpretation of classification models is worth further research to 
help both experts and non-experts understand the most accurate classification 
techniques. 

Above mentioned examples demonstrate use of visual interpretation in classical 
machine learning problems, while it should also be mentioned that there were some 
experiments that combine visualization and microarray classification process. A study 
that uses Support Vector Machines and tries to interpret the results using visualization 
was presented by Caragea et al. [9]. A similar study in terms of visualization of 
microarray data to interpret results of classification was conducted by Lee et al. [10]. 
Their tool called GeneGobi is mostly based on statistical instead of machine learning 
methods. Another tool was developed by Curk et al. [11] where visualization is used 
for setting the experiments and interpretation of results, which represents a major 
simplification of experimental process in microarray analysis. 

The following sections of this paper present a case study where a novel Visual 
Interpretation of Small Ensembles (VISE) method [12] is used on a microarray 
dataset discriminating three types of Leukemia that was initially presented by 
Armstrong et al. [13]. In contrast to experiments described in [12] another version 
of VISE tool was used where DTs are generated based on bagging instead of 
boosting DTs. Section 2 contains a presentation of virtual interpretation of small 
ensembles. It is followed by a section describing the experimental settings and 
results. Section 4 presents a validation study by providing an interpretation of the 
results in the context of rule sets and then by comparing the proposed adaptations 
with the combined and simple DTs for leukemia grouping. In the last section, the 
main contribution of this paper is summarized and several issues for future works 
are indicated. 
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2   Interpretation Tool 

Usually as the number of classifiers in ensemble increases it means an increase of 
complexity and decrease of comprehensibility, assuming that single models combined 
in an ensemble are comprehensible models (e.g. DTs or a set of rules). This paper 
demonstrates a novel tool for visual interactive interpretation of ensembles consisting 
of three DTs. It is based on idea that a small ensemble can increase the accuracy and 
still keep the complexity of the ensemble as low as possible. To ensure the diversity 
of induced DTs is high enough we use a simple variant of bagging [14] technique for 
building DTs. Training set is split into three equal parts, where the first DT is 
generated from the first two thirds, the second from the last two thirds and the last tree 
from first and last third of the examples in training set. Default pruning settings are 
used to achieve lower complexity levels of generated DTs. All DTs used are standard 
C4.5 trees as implemented in Weka environment [15]. The same environment was 
used as a core for the developed small ensembles interpretation tool.  

Main screen of the VISE (Visual Interpretation of Small Ensembles) tool is 
presented in Fig. 1. Primary DT window can be seen on the left hand side of the 
screen, while on the opposite side the other two DTs are displayed in smaller 
windows. Each of the trees on the right side can be magnified and transferred to the 
main window by switching the main and one of the two side windows containing 
simplified visualization of the tree. Bottom of the screen contains a set of rules that 
are extracted from the above trees in an interactive way. Interaction is an integral part 
of the tool; therefore user is allowed to select branches of trees that he is interested in, 
either by decision at the terminal node of the branch or by features (i.e. nodes) that are 
included in the branch. The first interactive step is selection of a significant branch 
(according to expert’s opinion) in a tree, which is followed by automatic extraction of 
the rule from this branch and all the rules that could possibly contribute to the 
decision from the remaining two trees. 

First step is followed by automatic extraction of rules that can be done in two 
ways: 

1. Using the training set examples, a single or a group of branches is selected 
(and rules are extracted from them) which contain the examples that were 
used when the selected branch was built. 

2. In case there are too few examples in the selected branch, we artificially 
create the examples whose attribute values correspond to the selected branch 
and label them using a robust and accurate ensemble (in our case we use 
random forests ensemble consisting of 100 DTs) 

This way user is able to observe which rules (i.e. DT branches) could possibly vote 
against decision of the main DT. Using this knowledge we are able to understand how 
and why an ensemble would vote differently in case of using a single DT for specific 
samples that fit in the selected branch of the tree. 

For each small ensemble we can also get the quick accuracy estimation using  
10-fold cross-validation. 
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Fig. 1. Main screen of VISE tool 

The informative value of resulting rules is marked by their color that represents 
their origin and by their decision class. The following section demonstrates usage of 
the tool on a gene expression dataset discriminating three types of Leukemia. 

3   Experimental Settings and Results 

This section highlights the details of our study and key findings that were obtained 
by applying the VISE tool to Leukemia microarray dataset. In the original research 
by Armstrong et al. [13] clustering algorithms revealed that lymphoblastic 
leukemias with MLL translocations can clearly be separated from conventional 
acute lymphoblastic and acute myelogenous leukemias. The same dataset consisting 
of 72 tissue samples, each of them containing 12582 gene expression measurements 
was used in our experiment. In the original study a dataset was split in a training set 
containing 57 samples and testing set with another 15 samples. In our study all 72 
samples (24 ALL, 20 MLL, 28 AML) were used in a single dataset, while 10-fold 
cross validation was used for accuracy estimations. Basic DT that was used to 
extract rules from a small ensemble of three DTs is presented in Figure 2 where 
number in parentheses indicates that all examples from training set were correctly 
classified. 
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Fig. 2. Primary decision tree induced by VISE 

Rules that were directly extracted from small ensemble are presented in Table 1. 
All rules extracted from primary DT are displayed in bold and are followed by rules 
that are fired in other two DTs using the corresponding samples from the selected 
primary tree branch. When evaluating the accuracy of decision trees that were built 
using Leukemia dataset [13] it was indicated that three decision trees together reached 
an average 10-fold cross validation accuracy rate of 90.5% compared to 84.2% that 
was achieved by single decision trees. 

For easier understanding and rule interpretation gene id to gene description 
mappings are presented in Table 2. When interpreting the results from VISE tool it 
should be noticed that among the rules fired in secondary DTs it is possible to find 
rules that are voting against the rule extracted from primary DT. Those rules could 
also be called opposing rules and should be taken into consideration when interpreting 
results. In our case there are two genes that are included in such rules – i.e. genes with 
identification numbers 41503_at and 38046_at. 

Table 1. Rules fired for each branch in the primary DT 

AML Branch 
IF 35307_at NOT EXPRESSED AND  1389_at NOT EXPRESSED THEN AML 
IF 1389_at NOT EXPRESSED AND 38046_at NOT EXPRESSED THEN AML 
IF 41503_at EXPRESSED AND 1389_at NOT EXPRESSED THEN MLL 
IF 41503_at NOT EXPRESSED THEN AML 
MLL Branch 
IF 35307_at EXPRESSED AND  1389_at NOT EXPRESSED THEN MLL 
IF 1389_at NOT EXPRESSED AND 38046_at EXPRESSED THEN MLL 
IF 1389_at NOT EXPRESSED AND 38046_at NOT EXPRESSED THEN AML 
IF 41503_at EXPRESSED AND 1389_at NOT EXPRESSED THEN MLL 
ALL Branch 
IF 1389_at EXPRESSED THEN ALL 
IF 1389_at EXPRESSED THEN ALL 
IF 41503_at NOT EXPRESSED THEN AML 
IF 41503_at EXPRESSED AND 1389_at EXPRESSED THEN ALL 
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Table 2. Gene descriptions for easier interpretation of results in Table 1 

Gene ID Description 
35307_at Homo sapiens mRNA for GDP dissociation inhibitor beta 

 
1389_at Human common acute lymphoblastic leukemia antigen (CALLA) 

mRNA, complete cds 
38046_at Homo sapiens mRNA for Prer protein 

 
41503_at Homo sapiens mRNA for KIAA0854 protein, complete cds 

 

4   Interpretation of Results 

This section provides an expert evaluation of results and shows the differences 
between traditional gene expression analysis techniques and VISE tool in terms of 
results interpretation. Evaluation is based on rules that were extracted from DTs and 
are presented in Table 1. 

GDP dissociation inhibitor (GDI) is a protein that controls the GDP-GTP exchange 
reactions. GTP-binding proteins involve in trafficking of molecules between cellular 
organelles. GDIs slow the rate of dissociation of GDP and release GDP from 
membrane-bound Rabs [16]. The GDI beta gene is vulnerable to inversion/deletion 
mutation and may cause leukemia. The association of GDI and its expression 
involving cellular transport have been reported by many researchers, for example [17] 
and [18]. It is evident from many researches that GDI expression is responsible for 
chronic myelogenous leukemia. 

Common acute lymphocytic leukemia antigen (metallo endopeptidase; neutral 
endopeptidase) is an important cell surface marker in the diagnosis of human acute 
lymphocytic leukemia (ALL) [19]. It is present on leukemic cells of pre-B phenotype, 
which represent 85% of cases of ALL. Yagi et al. [20] and Fasching et al. [21] have 
suggested that the specific antigen receptor may be present at birth in some patients 
with ALL, suggesting a prenatal origin for the leukemic clone. They also have 
showed that some patients with ALL characterized by specific translocations have 
been demonstrated to have cells showing the translocation at the time of birth. This is 
because Lymphoblasts antigen receptors are unique to a particular patient. Sheikh et 
al. [22] has reported of peripheral blood lymphocytosis caused by CD23, CD25 in 
addition to CD5 and CD10. The expression of antigens for ALL have been reported 
my many researchers. For example, Ogawa et al. [23], Cutrona et al. [24] and Shipp 
[25] have reported the close correlation between expression of CD10/neutral 
endopeptidase and tumor development.  

Red protein (RER protein; IK factor; cytokine IK) involves in the negative 
regulatory pathway of constitutive MHC Class II antigens expression. It expressed at 
similar levels in fetal and adult tissues in developmental stage. A lower expression of 
mRna for the protein may lead to fetal brain placenta COT 25-normalized squamous 
cell carcinoma, B cell metastatic chondrosarcoma and colon tumor.  
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Transcription factor ZHX2 involves in transcription factor activities and regulates the 
transcription [26, 27]. The irregular expression of mRNA may lead to lymphoma, B-
cell lymphatic leukemia and lung and spleen lymphoma. 

The rules above, although, show the direct association of GDI and lymphoblastic 
leukemia antigen to the ALL and AML, some of the features of leukemia exhibit a 
mixed type of leukemia, for example, MLL. The morphological features and 
immunophenotypic profile of the leukemia is not readily classifiable and may be 
influenced by some other expressions, for example, expression of Prer proteins and 
Transcription factors. The importance of these genes that influence the classification 
of leukemia cannot be ignored. 

5   Conclusions and Future Work 

From the previous section it is evident that results obtained from VISE tool can reveal 
potential new knowledge and make interpretation of results a simple task for 
bioinformatics experts. It was shown that in most cases it is enough to select a few 
crucial genes that are sufficient for improvement of classification accuracy. But a step 
further enables extraction of additional rules and significant genes that can be decisive 
for comprehensibility of classification results.  

Another important aspect of VISE tool is the interactiveness of the classification 
process. It enables interaction with the expert in a way where it can be specified 
which rules (i.e. DT branches) are important for him and does not rely only on 
automatic feature selection like most of other methods.   

As usual in the gene expression research we should emphasize that all the results 
are obtained from datasets containing a low number of samples. The increase of 
datasets that will provide us with more samples in the future also brings some new 
challenges. We can expect more complex classifiers which will also be more accurate. 
Therefore one of the main aims for the future is reduction of produced classifiers 
when working with many of them at once as it is the case in ensembles of classifiers.  
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Abstract. We have proposed an ant-based clustering algorithm for doc-
ument clustering based on the travelling salesperson scenario. In this pa-
per, we presented an approach called Ant-MST for gene expression data
clustering based on both ant-based clustering and minimum spanning
trees (MST). The ant-based clustering algorithm is firstly used to con-
struct a fully connected network of nodes. Each node represents one gene,
and every edge is associated with a certain level of pheromone intensity
describing the co-expression level between two genes. Then MST is used
to break the linkages in order to generate clusters. Comparing to other
MST-based clustering approaches, our proposed method uses pheromone
intensity to measure the similarity between two genes instead of using
Euclidean distance or correlation distance. Pheromone intensities associ-
ated with every edge in a fully-connected network records the collective
memory of the ants. Self-organizing behavior could be easily discovered
through pheromone intensities. Experimental results on three gene ex-
pression datasets show that our approach in general outperforms the
classical clustering methods such as K-means and agglomerate hierarchi-
cal clustering.

Keywords: gene expression data, clustering, ant-based clustering, min-
imum spanning tree.

1 Introduction

Microarrays enable biologists to study genome-wide patterns of gene expressions
in any given cell type, at any given time, and under any given set of condition.
Using these arrays can generate large amounts of data, potentially capable of
providing fundamental insights into biological processes ranging from gene func-
tion to cancer, ageing and pharmacology [1]. Even partial understanding of the
available information can provide helpful clues. For example, co-expressions of
novel genes may provide leads to the function of many genes for which informa-
tion is not available currently.

Clustering is a fundamental technique in exploratory data analysis and pat-
tern discovery, aiming at extracting underlying cluster structures. Cluster anal-
ysis is concerned with multivariate techniques that can be used to create groups

J.C. Rajapakse, B. Schmidt, and G. Volkert (Eds.): PRIB 2007, LNBI 4774, pp. 198–205, 2007.
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amongst the observations, where there is no a priori information regarding the
underlying group structure. Clustering of the genes on the basis of the tissues can
be used to search for groups of gene that might be regulated together. Dozens
of clustering algorithm exist in the literature and a number of ad hoc cluster-
ing procedures have been applied to microarray data. Available methods can
be categorized broadly as being hierarchical such as agglomerative hierarchical
clustering (AHC) [2, 3] or non-hierarchical such as k-means clustering [4] and
clustering through Self-Organizing Maps [5]. A major limitation of hierarchical
methods is their inability to determine the number of the clusters. The limitation
of k-means methods is their high computational complexity.

The concepts and properties of graph theory make it very convenient to de-
scribe clustering problems by means of graphs [6]. Nodes of a weighted graph
correspond to data points in the pattern space and edges reflect the proximities
between each pair of data points. Approaches based on minimum spanning trees
have been proposed for clustering gene expression data [7]. Minimum spanning
tree (MST), a concept from the graph theory, is used for representing multi-
dimensional gene expression data. Based on the representation, gene expression
data clustering problem is converted to a tree partitioning problem. Advantages
of using this method have been described and demonstrated as follows [7]: 1)
the simple structure of a tree facilitates efficient implementations of rigorous
clustering algorithm; 2) clustering based on MST does not depend on detailed
geometric shape of a cluster; 3) inter-data relationship is greatly simplified in
MST representation and no essential information for clustering is lost.

We have proposed an ant-based clustering algorithm for document clustering
based on the traveling salesperson (TSP) scenario [8]. It not only has the traits
of self-organization and robustness, but also can generate optimal number of
clusters without incorporating any other algorithms such as K-means or AHC.
In [8], to break the linkages of the fully connected network in order to generate
clusters, average pheromone strategy is used. The average pheromone of all the
edges is computed at first and then edges with pheromone intensity less than
the average pheromone will be removed form the network. Nodes will then be
separated by their connecting edges to from clusters. In this paper, we investigate
using the method based on minimum spanning trees (MST) to break the linkages
in order to generate clusters. The reasons behind are: 1) the method based on
MST has been proven efficient in the domain of gene expression clustering, 2)
and it has strong mathematical foundation.

Our proposed approach called Ant-MST consists of two steps. First, a fully
connected network of nodes is generated using the ant-based clustering method.
Then the linkages is broken based on MST in order to generate clusters. It uses
pheromone intensity to measure the similarity between two genes instead of using
Euclidean distance or correlation distance. Pheromone intensities associated with
every edge in a fully-connected network records the collective memory of the
ants. Self-organizing behavior could be easily discovered through pheromone
intensities.
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The rest of the paper is organized as follows. Section 2 presents the Ant-MST
approach. Experimental results on three gene expression datasets are discussed
in section 3. Finally, section 4 concludes the paper and outlines the future work.

2 Ant-MST: An Ant-Based Minimum Spanning Tree

2.1 Ant-Based Clustering

The Ant Colony Optimization (ACO) algorithm belongs to the natural class of
problem solving techniques which is initially inspired by the efficiency of real
ants as they find their fastest path back to their nest when sourcing for food. An
ant is able to find this path back due to the presence of pheromone deposited
along the trail by either itself or other ants. An open loop feedback exists in
this process as the chances of an ant taking a path increases with the amount of
pheromone built up by other ants.

Early approaches in applying ACO to clustering are to first partition the
search area into grids. A population of ant-like agents then move around this 2D
grid and carry or drop objects based on certain probabilities so as to categorize
the objects. However, this may result in too many clusters as there might be
objects left alone in the 2D grid and objects still carried by the ants when the
algorithm stops. Therefore, Some other algorithms such as k-means are normally
combined with ACO to minimize categorization errors. More recently, variants
of ant-based clustering have been proposed, such as using inhomogeneous pop-
ulation of ants which allow to skip several grid cells in one step, representing
ants as data objects and allowing them to enter either the active state or the
sleeping state on a 2D grid. Existing approaches are all based on the same sce-
nario that ants move around in a 2D grid and carry or drop objects to perform
categorization.

We have proposed an ant-based clustering algorithm for document clustering
based on the travelling salesperson (TSP) scenario [8]. The advantages of our
ant-based clustering approach are: 1) It does no rely on a 2D grid structure.
2) It can generate optimal number of clusters without incorporating any other
algorithms such as k-means or AHC. 3) When compared with both the classical
document clustering algorithms such as K-means and AHC and the Artificial
Immune Network (aiNet) based method, it shows improved performance when
tested on the subsets of 20 Newsgroup data1. Here, we investigate the ant-based
clustering algorithm for gene expression data analysis.

2.2 Minimum Spanning Trees

The concept of minimum spanning trees (MSTs) is from graph theory. For a
connected and undirected graph G, a spanning tree of the graph G, T is a
subgraph which is a tree and connects all the vertices together. A single graph
can have many different spanning trees. If we assign a weight to each edge,

1 http://people.csail.mit.edu/jrennie/20Newsgroups/
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                 ( a )                                       ( b )

Fig. 1. 2D representation of a set of gene expression data (a) and its corresponding
MST (b)

Table 1. Three objective functions and their corresponding clustering algorithms

Method Objective Function Procedure

Removing
longest
edges
(MST-R)

Partition an MST into K subtrees
so that the total edge-distance of
all the K subtrees is minimized

Find the K − 1 longest MST-edges, cut
them and get a K-clustering achieving
the global optimality of the objective
function.

Iterative
clustering
(MST-I)

Partition an MST T into K
subtrees {Ti}K

i=1 to optimize:∑K
i=1

∑
d∈Ti

Dist(d, center(Ti))
where d is the data point in the Ti

and center(Ti) is dependent on the
distance measure.

Start with an arbitrary K-partitioning
of the tree and iteratively do the fol-
lowing until converging. For each pair
of adjacent clusters, go through all tree
edges within the merged cluster to find
an edge which globally optimizes the 2-
partitioning of the merged cluster and
then cut the edge.

Global
opti-
mization
(MST-G)

Partition the tree T into K sub-
trees and select K representa-
tives d1, . . . , dK ∈ D to optimize∑K

i=1

∑
d∈Ti

Dist(d, di)

Use dynamic programming to find the
K representatives

and use this to assign a weight to a spanning tree by computing the sum of the
weights of the edges in that spanning tree, a minimum spanning tree or minimum
weight spanning tree is then a spanning tree with weight less than or equal to
the weight of every other spanning tree.

We can use an MST to represent a set of gene expression data and their
significant inter-data relationship. An example of a set of expression data and its
corresponding MST is given in 1. In this example, the weight between two node
is calculated using Euclidean distance. There are also other ways to measure the
distance between two gene expression profiles such as correlational distance and
mahalanobis distance. An MST of a weighted graph can be found by a greedy
method, such as the classical Kruskal’s algorithm [9].

After finding an MST T for a weighted graph, we can partition T into K
subtrees, for some specified integer K > 0. These K subtrees correspond to K
clusters. Since different clustering problems need different objective functions
to achieve best performance, three objective functions and their corresponding
procedures [7] are presented in Table 1.
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2.3 Gene Expression Clustering Based on Ant-MST

We propose Ant-MST, an ant-based minimum spanning tree, for gene expres-
sion clustering. Given N genes gi, i = 1, . . . , N and their expression profile
Ei = 〈ai1, ai2, . . . , aim〉, i = 1, . . . , N , we want to cluster these genes into sev-
eral categories based on similarities between their expression profiles. Figure 2
describes our algorithm in details.

1.Initialization.
N genes corresponds to N points in the graph. N genes are connected by 1

2
N ×

(N − 1) edges.
For every edge (i, j), set an initial value τij(t) for pheromone intensity.
Place m ants randomly on the N points.

2.Construct a fully connected network of nodes G
The fully connected network of nodes is built using the ant-based clustering
algorithm. Details can be found in [8]. Each edge is associated with a pheromone
intensity τ .

3.Build an MST T for the connected graph G
Initially, set T contain an edge with the smallest
pheromone intensity in the G, remove the edge from G.
Do the following iteratively Until all vertices are
connected by the selected edges:
add the edge with the smallest pheromone intensity
in the G
make sure that no cycle is formed.

EndLoop
4.Partition T into K subtrees
There are three methods to perform the partition which have been presented in
Table 1.

Fig. 2. Gene expression clustering algorithm based on Ant-MST

3 Experimental Results

3.1 Setup

After the investigation of the suitability of various datasets in Stanford Genomic
Resource Database2, three datasets were chosen to evaluate the performance of
our algorithms.

The dataset I is a subset of gene expression data in the yeast Saccharomyces
cerevisiae (SGD)3, which is commonly known as baker’s or budding yeast. A set
of 68 genes with each gene having 79 data points is chosen.

The dataset II is a temporal gene expression dataset in response of human
fibroblasts to serum4. It consists of 517 genes and each gene has 18 data points.
2 http://genome-www.stanford.edu/
3 http://www.yeastgenome.org/
4 http://genome-www.stanford.edu/serum/
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In this dataset, genes are listed according to their cluster order along with their
Gene bank Accession number and Clone IDs. Gene names with the SID prefix
are not sequence verified. The expression changes are given as the ratio of the
expression level at the given time-point to the expression level in serum-starved
fibroblasts.

The dataset III is the rat central nervous system development dataset5. It is
obtained by researchers using the method of reverse transcription-coupled PCR
to study the expression levels during rat central nervous system development.

3.2 Results

Rand index [10] is used to evaluate the performance of the clustering algorithm. It
is a metric to measure the similarity between two clusters which contain exactly
the same data objects. In our experiments, rand index is used to measure the
number of pair-wise agreements of resultant clusters from our algorithms and
the “expert” classes, normalized by the total number of pair-wise combinations.

The expression of Rand Index is as following:

R(M, N) =
a + d

a + b + c + d
(1)

Where M is the number of “expert” classes, N is the number of clusters to be
evaluated, a is “true positive pairs”, it is the number of pairs with same class
label of “expert class” that are assigned into the same cluster, d is “true negative
pairs”, it is the number of pairs with different class label that are assigned into
different cluster, b is “false negative pairs”, it is the number of pairs of the same
“expert” class label that are assigned to different clusters, c is “false positive
pairs”, it is number of pairs of different “expert” class label that are assigned
to the same clusters. Rand index lies between 0 and 1; a high value indicates
high the degree of agreements of resultant clusters and “expert” classes. Table 2
shows the detailed “expert” information of these datasets.

Table 2. Statistics on experimental data

Gene Cluster
Dataset A B C D E F

I 28 17 15 8 - -
II 305 43 7 162 - -
III 27 20 21 17 21 6

Table 3 lists the experimental results based on the different objective func-
tions, MST-R, MST-I and MST-G as shown in Table 1, and on different datasets.
Results using the classical clustering algorithms such as Agglomerative Hierar-
chical Clustering (AHC) and K-means are also presented.

5 http://www.arclab.org/node pages/265.html
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Table 3. Comparison of experimental results on different algorithms

Rand Index
Methods Dataset I Dataset II Dataset III

MST-R 0.910 0.541 0.293
MST-I 0.936 0.682 0.582
MST-G 0.923 0.811 0.568
AHC 0.803 0.628 0.575
K-means 0.701 0.565 0.676
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It can be observed from Table 3 that the performance of clustering algorithm
based on MST is better than that of AHC and K-means on dataset I and II. The
rand index value achieved is 93.6% by MST-I on dataset I and 81.1% by MST-G
on dataset II. However, the rand index values obtained using the MST-based
methods on dataset III are lower than that of K-means with MST-I slightly
outperforming AHC. The probably reason of better performance of K-means on
dataset III is that the exact cluster number 6 was preset by the user while in
practice it is hard to predict the correct cluster number.

The MST-based methods are able to calculate the optimal number of clus-
ters automatically based on the transition profile values. Figure 3, 4, 5 are the
transition profile diagrams for dataset I, II and III respectively. In the transition
profile diagram, the x-axis represents the number of cluster, while the y-axis
represents transition profile values. The highest transition profile value indicates
the optimal number of clusters. It can be observed from Figure 3 that the op-
timal number of clusters in dataset I is 4, which is same as the actual number
of clusters as can be found in Table 2. While for dataset II, the optimal number
of clusters is 3 as shown in Figure 4. This is slightly different from the actual
cluster number 4. Figure 5 reveals that the optimal number of clusters in dataset
III is 3 which is different from the actual cluster number 6. This also explains
the worse performance of MST-based methods in dataset III.

4 Conclusions and Future Work

In this paper, we have presented a clustering algorithm Ant-MST for gene expres-
sion data clustering. It consists of two stages. First construct a fully connected
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network of nodes using the ant-based clustering algorithm and then build an
MST from the fully connected graph and partition it into K clusters. Experi-
mental results on three different datasets have been presented to illustrate its
feasibility and efficiency. In future work we will continue on the enhancement
of the gene expression data clustering component and conduct a large scale of
experiments to evaluate the system performance.
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Abstract. The self-organizing map (SOM) is useful within bioinformat-
ics research because of its clustering and visualization capabilities. The
SOM is a vector quantization method that reduces the dimensionality of
original measurement and visualizes individual tumor sample in a SOM
component plane. The data is taken from cDNA microarray experiments
on Diffuse Large B-Cell Lymphoma (DLBCL) data set of Alizadeh. The
objective is to get the SOM to discover biologically meaningful clusters
of genes that are active in this particular form of cancer. Despite their
powers of visualization, SOMs cannot provide a full explanation of their
structure and composition without further detailed analysis. The only
method to have gone someway towards filling this gap is the unified
distance matrix or U-matrix technique. This method will be used to pro-
vide a better understanding of the nature of discovered gene clusters. We
enhance the work of previous researchers by integrating the clustering
results with the Gene Ontology for deeper analysis of biological meaning,
identification of diversity in gene expression of the DLBCL tumors and
reflecting the variations in tumor growth rate.

1 Introduction

Microarrays are an exciting and recent technological breakthrough that has en-
abled the detailed analysis of cellular activity and condition [1]. Recent work has
highlighted how components of metabolic pathways can be identified and how
the protein targets of drug treatment can be determined using expression profiles
[2]. Microarray technology can deliver an extremely detailed analysis of cellu-
lar activity and condition [3]. Recent work has highlighted how components of
metabolic pathways can be identified and how the protein targets of drug treat-
ment can be determined using expression profiles for example Alizadeh et al [4]
discovered a new sub-class of cancer with implications for clinical treatment. Mi-
croarray experiments are producing unprecedented quantities of genome data,
the management and analysis of this data is starting to receive greater attention
[5]. However, there is no one technique that appears to be superior, either for
data management or data analysis.
� Corresponding author.
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Microarrays have been used extensively for gene expression analysis and geno-
typing [6]. Expression analysis seeks to uncover the activity level of certain genes
and groups of genes. This is of vital importance in drug discovery where not only
are the anticipated effects on the target genes must be confirmed but also for
any side-effects on non-target genes must to be monitored. Genotyping seeks to
discover and identify many of the mutations within a single gene and can be
used for the screening of individuals for particular diseases [7]. Obtaining such
information at an early stage will lead to to improved clinical treatment [8].

Microarrays are small glass slides or chips that contain many thousands of
genes (strands of DNA) formed as spots which are laid out in a regular grid-like
structure. The genes are selected by scientists from gene libraries, and because
of their microscopic size they must be located on the glass substrate by auto-
mated robotic equipment. The selected genes are usually chosen because they are
deemed important for the particular biological process to be investigated. The
microarrays are then introduced to the biological samples (DNA that have been
labeled by fluorescent materials), which then bind to the original DNA placed
on the glass substrate. The microarray image is then scanned and digitised by
a laser system. Image processing software is used to reveal the intensity of the
fluorescent labels and depending on the type of microarray, their colour. The
intensity of the spot is proportional to the level and activity at which the genes
are being expressed. Colour, where applicable, is used to identify sample and
control populations.

The starting point for any microarray experiment is to define the biological
question to answer [9]. For example, a scientist may wish to pursue the hypothesis
that a certain number of specific genes are active (up-regulated) in a particular
type of cancer and if treated with a particular drug should be inactive (down-
regulated). The choice of microarray must also be made, often Affymetrix Gene
chips are used in parallel with cDNA microarrays [10].

This paper is concerned with analyzing gene expression data generated from
microarrays. We use the self-organizing map (SOM) because of its clustering and
visualization capabilities. SOM is a vector quantization method that reduces that
simplifies and reduces the dimensionality of original measurement and visualizes
individual tumor sample in a SOM component plane. The data is taken from
cDNA microarray experiments on Diffuse Large B-Cell Lymphoma (DLBCL)
data set of Alizadeh [4]. Diffuse Large B-Cell Lymphoma is the most prevalent
lymphoid cancer in adults and accounts for 30-40% of cancers, unfortunately,
50% patients cannot be cured.

The remainder of this is paper is structured as follows; section two discusses
the details of the new microarray technology and the problems inherent in the
data they generate for machine learning researchers; subsections deal with the
characteristics of the SOM that make it suitable for bioinformatic work and
the gene ontology system which enables the representation and processing of
information about gene products and functions. Section three describes the data,
experimental setup and preprocessing issues specific to the microarray data and
the experimental results, finally section four presents the conclusions.
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2 The Biological Basis of Microarray Technology

Figure 1 shows the internal structure of a typical microarray, the substrates can be
glass slides, plastic slides or membranes where the cDNA can be deposited. They
have a regular matrix structure, each spot corresponds to a gene sequence. The
same gene sequences are usually repeated elsewhere on the chip for reasons of pre-
cision and accuracy. Several thousand genes may be placed on an individual chip,
the cost of running microarray experiments is directly related to the number of
genes per chip.

Although the process of creating microarrays and the analysis of the resultant
data is fraught with difficulties their essential operation is relatively straightfor-
ward to understand. A set of DNA sequences stored in libraries that correspond
to specific genes selected by scientists for their experiment are transferred or
spotted onto a glass slide by robots. Cell cultures are taken from the patients (a
sample and a control) and each is labelled by a fluorescent dye, usually red for
the sample population and green for the control population. These cultures are
then introduced to the microarray and allowed to bind or hybridise with their
complementary target cDNA sequences on the chip. The more active a gene is,
the more mRNA it should produce and so the intensity and colour of the spot
corresponding to that gene ought to appear greater than non-active genes. If the
control population is in greater quantity then it will appear green, if the sample
population is in greater quantity then it will appear red, if the spot is yellow

Fig. 1. Each spot is composed of millions of cDNA strands, diagram courtesy of
Affymetrix Corporation



Integrating Gene Expression Data from Microarrays Using the SOM 209

then both populations are expressed in equal quantities, if the spot is black then
no hybridisation has occurred.

The basic idea behind microarray analysis is to examine the intensities of the
spots which is an indirect indication of the level of expression of the genes. The
expression levels are often compared against biologically related samples to see
which genes are differentially expressed. This can be displayed as a ratio between
the sample and control genes, there are disadvantages to using only expression
ratios for data analysis. The ratios can help determine important relationships
between genes but they also remove information relating to the absolute gene-
expression levels. The information pertaining as to wether a gene is up- or -down
regulated appears differently when using ratios; i.e. a up- factor of 2 have a value
of 2 while those genes that are down-regulated by 2 have a value of -0.5 [11].
Transforming the data using a Log2 base produces a more intuitive range of
values, see figure 2. This is a simple way to compare the two channels. Points
that are above the diagonal in this plot correspond to genes that have higher
expression levels in the sample than in the sample.

Typically, the first and most commonly used technique is to normalise the
data, this manipulates the hybridisation intensities to balance them in order to
make meaningful comparisons [12]. Normalisation usually needs to be applied
because of various problems with experimental bias such as background inten-
sities of the microarrays are not uniform, also differences can occur between
pen-tips/print-tips, or blocks. These must be compensated for by normalizsa-
tion, hopefully the information will be available to normalise each block sepa-
rately. Normalisation of data means that weaker signals are amplified, this could
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mean they are related to important cellular activity that is expressed in small
quantities of cDNA or perhaps could just be noise. Replicates, are one way of
determining such effects.

It is also useful to plot the log2 ratios against the intensity for each spot.
Figure 3 shows how such a plot can highlight the difference.

Typically, the first and most commonly used technique is to normalise the
data, this manipulates the hybridisation intensities to balance them in order to
make meaningful comparisons. Normalisation usually needs to be applied be-
cause of various problems with experimental bias such as background intensities
of the microarrays are not uniform. Normalisation of data means that weaker
signals are amplified, this could mean they are related to important cellular ac-
tivity that is expressed in small quantities of cDNA or perhaps could just be
noise. Replicates, are one way of determining such effects.

2.1 Kohonen Self-Organising Feature Map (SOM)

The Kohonen SOM consists of a simple architecture. Since its initial introduction
by Kohonen several improvements and variations have been made to the training
algorithm. The SOFM consists of two layers of neurons, the input and output
layers. The input layer presents the input data patterns to the output layer and
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Fig. 4. Architecture of SOM, showing a regular grid of neurons. The U-matrix tech-
nique calculates the weighted sum of all Euclidean distances between the weight vectors
for all output neurons. The resulting values can be used to interpret the clusters learned
by the SOM. Each white dot represents a neuron and the colours represents different
values of the weights, a distinct boundary is formed forming two large clusters.

is fully interconnected. The output layer is usually organised as a 2-dimensional
array of units which have lateral connections to several neighbouring neurons.
The architecture is shown in Figure 4.

Each output neuron by means of these lateral connections is effected by the
activity of its neighbours. The activation of the output units according to Ko-
honens original work is by equation 1. The modification of the weights is given
by equation 2 :

Oj = Fmin(dj) = Fmin(
∑

i

(Xi − Wji)2) (1)

ΔWij = Ojη(Xi − Wji) (2)

where:
Oj= activation of output unit, Xi = activation value from input unit, Wji = lat-
eral weights connecting to output unit, dj = neurons in neighbourhood, Fmin=
unity function returning 1 or 0, η= gain term decreasing over time.

The lateral connections enable the SOM to learn “competitively”, this means
that the output neurons compete for the classification of the input patterns.
During training the input patterns are presented to the SOM and the output
unit with the nearest weight vector will be classed as the winner.

The Kohonen self-organising feature map (SOM) is a neural network which
is unsupervised technique that represents multi-dimensional patterns into 2-
dimensional form for visualisation [13]. It also has the important feature of
topological preservation i.e. clusters that are close to each other represent pat-
terns that are very similar. The SOM is often used to group microarray gene
expression data into related clusters, for example Kaski selected a subset of 1551
yeast genes of known functional classes [14,15]. Since neural networks are not
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amenable to internal scrutiny (they are known as black boxes), Kaski was inter-
ested in determining the internal representation by using U-matrix analysis to
show how the SOM partitioned the boundaries between the clusters.

2.2 The Gene Ontology

The use of ontologies is increasingly perceived as a way forward to overcome the
complexity of biological information, for comprehensive introductions see [16].
A substantial amount of biological information is hierarchial in nature and the
inter-relationships between the various pieces of knowledge can be meaningfully
formalized, structured and represented by an ontology. One should not confuse
Gene Ontology with a database of gene sequence or with a catalogue of gene
product, rather than it gives us an idea of how gene product behaves at cellular
level. It is not a way to bring together all the available biological datasets. The
authors of GO have tried to provide a practically useful framework for keeping
track of biological annotations which are applied to gene products.

GO is divided in to three disjoint term hierarchies, which are cellular compo-
nent, biological process and molecular function. A cellular component is just a
component of a cell with a condition that it is a part of large object, which might
be a gene product or anatomical structure. A biological process is defined in GO
as:“A phenomenon marked by changes that lead to a particular result, mediated
by one or more gene product” [17]. Biological process terms can be quite specific

molecular_function

catalytic activity

protein kinase activity

protein−tyrosine kinase activity

kinase activity

transferase activity

transferase activity, transferring phosphorus−containing groups

phosphotransferase activity, alcohol group as acceptor

Fig. 5. Gene Ontology identifies gene JNK3 as active in protein-tyrosine kinase activity
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(glycolysis) or very general (apotosis). Molecular function and biological process
terms are clearly closely interrelated. Molecular Function describes activities at
molecular level, like that of binding activities or catalytic activities, In GO it
represent activities rather than molecules or complexes that perform the action,
and do not specify the context in which action take place.

3 Experimental Results

The work of Alizadeh is often cited as a clustering success, whereby the au-
thors were able to identify a new sub-class of cancer [4]. The novel variety was
revealed through hierarchial clustering of tumors DLBCL (diffuse large B-cell
lymphoma) data. The authors identified two distinct groups that were highly
correlated with patient survival rates (40% of patients respond well to conven-
tional treatment), these patients showed germinal centre B-like DLBCL stages
of expression. This implied a major breakthrough for the treatment for this va-
riety of cancer as the 60% of patients who succumbed to the disease showed
activated B-like cells stages of expression. Sources of experimental data: All
the data used in this study including survival data of lymphoma patients was
obtained from the web supplement of the publication of Alizadeh available at
http:/llmpp.nih.gov/lymphoma/data.shtml.

Data
Normalisation

Data
Preprocessing

SOM
Training

Clustering
Cluster
Analysis

Visualisation

Fig. 6. Experimental setup and process

3.1 Data, Experimental Setup and Preprocessing

The various stages involved are highlighted in figure 6. The fluorescent intensity
of each gene was tested and if greater than 1.4 times the local background were
considered well measured. The ratio values were log-transformed (base 2) and
stored in a table (rows, individual cDNA clones; columns, single mRNA samples).
The Alizadeh data was preprocessed by the Lowess function with zero-norm with
linear models and kernel methods. Each feature was given mean zero value and
standard deviation was reduced to one. After cleaning the data that is removing
all those which were under expressed and any bad measurement in the data, the
original data set of 4026 genes was reduced to 3535 genes from 96 samples.

Figure 7 shows the U-Matrix of DLBCL entire data set, the individual clus-
ters are quite well differentiated. The name of the genes superimposed over the



214 K. McGarry, M. Sarfraz, and J. MacIntyre

1 2 3 4 5 6
7.6

7.7

7.8

7.9

8
Quantization error after each epoch

−4 −3 −2 −1 0 1 2 3 4 5
−5

0

5
First two components of map units (o) and data vectors (+)

Fig. 7. Training run on DLBCL data

map unit so it is very easy to observe and analysis which genes are part of a
particular cluster. The expression data can be judged by the colours, predom-
inately reddish colour implies that a particular gene is highly expressed. The
bluer the colour implies that a particular gene is less expressed. Despite their
powers of visualization, SOMs cannot provide a full explanation of their struc-
ture and composition without further detailed analysis. The only method to have
gone someway towards filling this gap is the unified distance matrix or U-matrix
technique of Ultsch [18]. Further U-matrix research involving the analysis of
individual component features was undertaken by Kaski [19]. Recent work by
Malone makes explicit the contribution of each variable in the cluster to be
assessed for characterising the cluster and can be expressed in rule format [20].

A deeper analysis of the SOM component plane (figure 8) reveals 42 DLBCL
samples and three DLBCL lines (OCILy3, OCILy10 and OCILy1), the topology
of the SOM is 20x15 and the colour scale of component plane represent the mean
ratio in each map node.

Through the proposed approach applied above one can directly observe gene
expression patterns of different lymphomas sub types i.e. DLBCL, CLL and FL, as
it can be seen by the figures above that there are four prominent clusters identified
in DLBCL 4, 2, 9 and the large group of clusters of 1 and 12 a short summary of the
genes included in these cluster are listed table 1. After selecting the genes in the
second subset file, the annotations have to be extracted from the ontology website.
The particular information of interest for humans is gene-association-goa-human.
It contains up to date annotations of Homo Sapiens, the more interesting genes
were tested to get their ancestor list and also their root graph.
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Fig. 8. Umatrix and SOM component planes

Table 1. Important DLBCL Genes clustered by the SOM

GeneName GO ID Description

TP73L GO:0045892 Tumor protein p73-like
JNK3 GO:0004713 Catalysis of ATP and a protein tyrosine.
LYSp100 GO:0006952 Defense/immunity protein activity
RAD50 GO:0030674 physically linking the bound proteins or complexes to each other
CD44 GO:0016337 The attachment of one cell to another cell via adhesion molecules
GADD34 GO:0030968 Results in changes in the regulation of transcription and translation
CD5 GO:0025383 Involvement in DLBCL tumor progression

The DLBCL data was applied to the Gene Ontology to look at the signifi-
cance of interesting genes and Gene Ontology terms that are used in the micro
array. For the ontology study the data used all 3535 genes, first we applied
K-means clustering was done to select only interesting genes during this all un-
der expressed genes were removed, the total number of gene were reduced to
1157, than clustering was done into 4 sets. The difficulty of course is accurately
identifying “interesting” genes.

4 Conclusions

We have demonstrated the use of Self Organising Map as a tool for analysis of
gene expression data. The approach taken in our paper for the analysis of gene
expression data were consistent with results originally published. However, the
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aim of this study was to demonstrate the visualization capabilities of SOM with
the original data. We also integrated the Gene Ontology with the discovered
clusters of genes, which provides additional domain knowledge regarding gene
function and common biological pathways. Finally in this study, the theoretical
and practical approach of analysis of gene expression data of human Diffuse
Large B cell Lymphoma have been discussed using SOM. We conclude that the
SOM provides an excellent perfect platform for visualization and analysis of
microarray data, and it will be very useful in extracting biologically meaningful
information, when combined with domain knowledge such as the Gene Ontology.
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Order Preserving Clustering by Finding

Frequent Orders in Gene Expression Data
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Abstract. This paper concerns the discovery of Order Preserving Clus-
ters (OP-Clusters) in gene expression data, in each of which a subset of
genes induce a similar linear ordering along a subset of conditions. After
converting each gene vector into an ordered label sequence. The problem
is transferred into finding frequent orders appearing in the sequence set.
We propose an algorithm of finding the frequent orders by iteratively
Combining the most Frequent Prefixes and Suffixes (CFPS) in a statis-
tical way. We also define the significance of an OP-Cluster. Our method
has good scale-up property with dimension of the dataset and size of the
cluster. Experimental study on both synthetic datasets and real gene
expression dataset shows our approach is very effective and efficient.

1 Introduction

In gene expression dataset, each row stands for one gene and each column stands
for one condition. Traditional methods for pattern discovery in gene expression
matrices are based on clustering genes (conditions) by comparing their expres-
sion levels in all conditions (genes). However, general understanding of cellular
processes leads us to expect subsets of genes to be coregulated and coexpressed
only under certain experimental conditions. Recent research works [1-8],focus on
discovering such local patterns embedded in high dimensional gene expression
data.

Order preserving clustering (OP-Clustering)[9] is one discipline of looking
for submatrices in which value the rows induce the same linear ordering in the
columns. In former study of gene expression profiles, researchers regard there are
certain stages for genes. They use on or off to stand for the state of gene. There
could be more than two stages. The idea of stages encourages us to measure
the similarities by comparing the condition orders between two genes. Therefore
we expect the data to contain a set of genes and a set of conditions such that
the genes are identically ordered on the conditions. By finding the hidden order
and genes that support it, we can potentially find the different stages shared by
the genes. Figure 1 shows an example of the order preserving subsequences in
two data sequences. In Figure 1(a) there is no obvious trend between the two
sequences. However, if we only consider columns [c d e j] as shown in Figure
1(b), the two subsequences show strong coherence on these four columns. The
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(a) (b)

Fig. 1. An example of the Order Preserving Subsequences in two sequences.(a) Original
data, (b) the OP subsequences.

two subsequences show the same ascending pattern if we rearrange the columns
as [j d e c].

Problem Statement. Given an n×m gene expression dataset A, where G =
{g1, g2, . . . , gn} is the set of genes (also the rows), C = {c1, c2, . . . , cm} is the set
of conditions (columns). Order Preserving Cluster (OP-Cluster) OPC = (P, Q)
is a submatrix of A, where P ⊆ G, Q ⊆ C, that all the genes in P share the
same linear order on the conditions in Q.

That means there is a permutation of the conditions in Q, after which all the
genes in P show the ascending patterns. An embedded OP-Cluster can be iden-
tified by the order of conditions which involve in. Here we call the permutation
of conditions the order of the OP-Cluster and the subset of genes the supports
for that order. From this point of view the work of finding OP-Clusters is related
to the so called sequential pattern mining in some other literature [10][11][12].

In this paper we propose a model of OP-Clustering on numerical dataset.
After converting the numerical dataset into a sorted label sequence set. We
present a heuristic method of finding the frequent orders by combining the most
frequent prefix and suffix iteratively in a statistical way. The structure of the
paper is as follow. In section 2 some related work is discussed. The OP-Clustering
algorithm (CFPS) is presented in section 3. The experimental results on both
synthetic dataset and real gene expression dataset are presented in section 4 and
we draw the conclusion in section 5.

2 Related Work

The concept of Order-Preserving SubMatrix (OPSM) was first introduced by
Ben-Dor et al.[9] and they also proved the OPSM problem was NP-hard in the
worst case. By discovering a subset of genes identically ordered among a subset
of conditions they focused on the coherence of the relative order of the conditions
rather than the coherence of actual expression levels. A stochastic model was
developed by them to discover the best row supported submatrix given a fixed



220 L. Teng and L. Chan

size of conditions. For OPSM the quality of their resulted cluster is very sensitive
to some given parameters and the initial selection of partial models.

Liu et al.[13] proposed an exhaustive bicluster enumeration algorithm to dis-
cover all significant OP-Clusters. Their pattern discovery algorithm is heavily
inspired in sequential pattern min-ing algorithms [14]. Mining sequential pattern
was first introduced in the work of Agrawal et al.[10], and most methods in this
area are based on breadth-first or depth-first search. Liu et al. used a compact
tree structure to store the identities of the rows and the sequences sharing the
same prefixes. A depth-first algorithm was devised to discover the OP-Clusters
with a user-specified threshold. The drawback is that the construction of the
OPC-Tree is very time consuming and it needs excessive memory resources. For
large dataset pruning techniques have to be taken before it can be effective.

Bleuler S. and Zitzler Z.[15] used a scoring function which combines the mean
squared residue score with the OPSM concept. It allows the arbitrarily scale and
degree of orderedness required for a cluster. They proposed an evolutionary algo-
rithm framework that allows simultaneous clustering over multiple time course
experiments. A local search procedure based on a greedy heuristic was applied
to each individual before evaluation. Their method is still time consuming and
they can only find non-overlapping clusters in one run.

Most existing methods based on exhaustive searching and need excessive com-
putation and memory cost. In our work, a heuristic method based on statistical
information is proposed to find the OP-Clusters by finding the frequent orders
in the sequence set which comes from the original numerical dataset.

3 Algorithm

In this section we present the algorithm. Firstly the main procedures of the
algorithm is introduced in section 3.1. Then some details of the algorithm are
given in section 3.2-3.4. Examples are used to to illustrate the algorithm.

3.1 A Top Down Algorithm to Find Frequent Orders

We divide the model into the following three phases. In Step 1 numerical dataset
is converted into sequence set. This processing takes only once in the first run.
In Step 2 and 3 the frequent orders is constructed iteratively. These two steps
would be repeated when necessary.

Step 1. Sorting Phase. Each condition is identified with a label. Then each
gene expression vector is sorted in non-decreasing order. According to the sorting
result each gene expression vector is converted into an ordered label sequence.
The order of each label in a sequence stands for the ranking of the corresponding
condition in the particular gene expression vector. Now the whole dataset is
converted to a sequences set.

The conditions with very close values are grouped to form an order equivalent
group in which we make no no difference on their relative order. That means
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(a) (b)

Fig. 2. (a) Original numerical data matrix, (b) sequences of column labels of the data
matrix

conditions in order equivalent group could have exchangeable orders. The strict
order requirement is too sharp in OP-Clustering scheme and orders between
close values would be meaningless. Since order between some conditions might
be disturbed by sampling processing especially when noises exist. We define
a threshold θ. When difference between two conditions is smaller than θ, we
group them together to form an order equivalent group. θ is relative to the
magnitude of dataset. Figure 2 shows an example the sorting phase. “()” means
order equivalent group. Before going on we give some notations.

Definition 1. For any two labels, no matter they are adjacent or not in a
sequence with no repeating labels, the one that comes before is called the prefix
and the other one is called the suffix. E.g. in sequence “fdecab”, “e” is prefix of
“c”, “a” and “b”. Also it is suffix of “f” and “d”.

Definition 2. For two label sequences x and y, if all labels of x are contained in
y and any two labels of x have the same order as they have in y then we say x
is a subsequence of y or x appears in y. E.g. “dca” is a subsequence of “fdecab”.

Definition 3. Sequence x is different from sequence y when any of the following
two cases occurs, 1. There are labels in x which do not appear in y, 2. The
common labels of the two sequences have different orders. E.g. sequence “adcdf”
and “acbed” are different from sequence “abcde”, while “abe” is not.

An embedded OP-Cluster can be identified by first finding the order of its
columns, which is the frequent order appearing in the sequence set. The idea
of frequent order is similar to the frequent pattern in the sequential pattern
mining problem [16][11][12]. However, in our work it is more complicated than
conventional sequential pattern mining problem. The original sequences we are
handling have the same length. Different labels appear once and only once in each
sequence. The identities of the genes associated with each frequent order have
to be recorded in order to determine the genes involved in an OP-Cluster. While
conventional sequential mining algorithms only keep the number of appearance
of frequent subsequences but not their identities.
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Step 2. Counting Phase. We scan the label sequences and construct an order
matrix O which counts the occurrence of any label being prefix or suffix of any
other labels. In the example there are 6 labels. Then order matrix O is a 6 × 6
matrix as Figure 3 shows. Each row/column stands for one label. O(a, b) stands
for the occurrence frequency of “a” being prefix of “b” (or “b” being suffix of
“a”) in all the rows. Suppose the original numerical data matrix has n rows an
m columns then O is a m × m matrix and O(a, b) + O(b, a) = n + z (z is the
number of order equivalent groups which contain “a” and “b”).

Fig. 3. Finding the frequent prefix and suffix combination of [d e] from order occurrence
matrix by picking out the row (column) with the maximum accumulated occurrence
frequencies

Order matrix shows occurrence frequencies of any length-2 subsequences. Sup-
pose original dataset is randomly constructed, orders between any two labels
would be evenly distributed in the rows. That means the possibility of occur-
rence of “a” before “b” would be the same as that of “b” before “a”. However
if an OP-Cluster exists in data matrix some labels would have much higher
frequencies of being prefix/suffix then the other labels in the global way. This
statistical information is useful to find the frequent orders shared by a significant
number of gene vectors.

Step 3. Finding the most frequent prefix and suffix. We accumulate the
total number of occurrences of each label being prefix (suffix) of another labels in
all rows. It is the summation of the corresponding row (column) of order matrix
O. The most frequent prefix (suffix) is the label with the maximum number of
accumulated occurrences of being prefix (suffix). In the example of Figure 3 “d”
and “e” is the most frequent prefix and suffix respectively. We combine the most
frequent prefix and suffix to form an initial frequent order candidate which has
higher occurrence frequency in the sequences set. So [d e] is the seed for growing
the frequent order in this example.

Only the supporting rows for this order is kept. Other rows which do not
support the order is removed. And we extract subsequence between the current
prefix and suffix from the remaining rows. Figure 4(a) shows the 3 subsequences
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(a) (b)

Fig. 4. (a) Set of the extracted subsequences, (b) updated order matrix

“acb”, “abc” and “ac”. Then we go back to step 2 and update order matrix
O based on the remain subsequences as shown in Figure 4(b). In the second
run [a c] is found as the new prefix and suffix combination. Since order [d e] is
supported by all remaining rows and “d” is the first prefix (“e” is the last suffix)
of all labels in the subsequences, [a c] is put between the former prefix and suffix
to form an enlarged frequent order of [d a c e]. Step 2 and 3 could be repeated
when the minimum support (will be discussed later) is satisfied. By iteratively
finding the most frequent prefix (suffix) and combining them we enlarge frequent
order candidate step by step. Due to the noise in data we could miss some prefix
or suffix of target frequent order during iterations. Enhancement can be made
by repeating the whole procedures on the remaining rows and all columns.

3.2 Minimum Support for the Frequent Order

Some researchers choose an exact value as the minimum support While we use
p(t) as the minimum support criterion,

p(t) =
1 − pini

ln(t) max
ln(t) + pini (1)

where t stands for the current iteration. In the first iteration p(1) = pini and
p(t) ≤ 1. p(t) increases with the iteration. t max stands for the maximum value
of t. If original dataset has m columns, the maximum value of the iteration would
be m/2.

We compute the portion of number of supports for enlarged frequent order
to number of current remaining rows. Iteration goes on only when the value is
bigger than p(t). Since we delete the non-supporting rows after each iteration,
number of remaining rows keeps decreasing. If non-frequent sub-prefix or sub-
suffix is added to the frequent order candidate number of remaining supports
would decrease by a large number. In this way we reject non-frequent orders. To
loosen the minimum support requirement one can use p(t)2 instead.
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(a) (b)

Fig. 5. (a) Updated sequence set (the gray elements construct an OP-Cluster), (b)
updated occurrence matrix

3.3 Find Proper Single Label When No Frequent Combination of
Prefix and Suffix Exists

When target frequent order has an odd number of labels, it can not be discovered
by including both prefixes and suffixes to the frequent order iteratively. The
hidden OP-Cluster in Figure 6(a)has frequent order of [d a e]. [d e] would be
found in the first interation and [a b] in the second iteration. While for order
[d a b e] there are only two supports. That could lead to a non-frequent order.
So when no significant prefix and suffix combination could be found, we count
the occurrence frequencies of all labels in remaining subsequences. Column with
the maximum number of appearance would be checked to see whether it could
be added into the candidate order. So “a” is added to form the frequent order
[d a e] and result in a 3 × 3 OP-Cluster when satisfying the minimum support.

3.4 Find Multiple OP-Clusters

We repeat the whole algorithm and whenever we find a new frequent order candi-
date we compare it to all existing frequent orders. If the candidate is not different
from the existing frequent orders (see Definition 3), we ignore it and update the
occurrence matrix O then repeat until new candidate which is different from the
existing ones is found. Theoretically as iteration goes on, all label combinations
could be tested. But frequent orders would be processed first and non-frequent
sequences would be rejected at very early stage without much processing. This
scheme reduces a large proportion of computation cost. There is rarely multi-
ply operation in our algorithm. The major cost is on computing matrix O by
counting the accumulated occurrence. Cost for the whole algorithm is hard to
estimate since number of iteration varies a lot for different datasets. In step 1
the sorting requires time in O(nm) and only take place for once. Calculation of
matrix O in the first run is an O(m2n) effort. This cost drops dramatically in
following iterations since number of supporting rows and length of subsequences
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decrease a lot. Space complexity of the whole algorithm is O(nm) which is very
small comparing to most of the existing methods.

4 Experiments

The algorithm is tested with both synthetically generated datasets and real
gene expression datasets for effectiveness and efficiency. The experiments are
implemented with MATLAB and executed on a computer with a 3.2 GHz and
0.99 GB main memory.

Size of OP-Cluster, which means number of columns and rows involved, is
the measurement for its significance. Also length of potential frequent order and
number of its supports are two critical factors that affect the performance of our
algorithms. However, the best OP-Cluster is hard to define since shorter orders
are supported by much more genes. For n rows with length m, the probability
of finding at least k supports for any order with length m is,

P (n, m, k) =
n∑

i=k

(
1
m!

)(
m! − 1

m!
)n−iCi

n (2)

P decreases with the increasing of m and k. P could be used to measure the
significance of an OP-Cluster. The smaller P is, the more significant the OP-
Cluster is.

4.1 Synthetic Data

We generate the synthetic data in this way: Firstly, random datasets were gener-
ated. Then OP-Clusters were inserted manually into the datasets. In the follow-
ing experiment each case has been implemented for 10 times. We get the average
value of all runs.

Sometimes instead of finding the exact manually inserted OP-Cluster we find
OP-Clusters which overlap with the inserted one. These OP-Clusters could be
formed by chance when other conditions were included in the frequent order.
Suppose a k × l OP-Cluster was inserted and an OP-Cluster, which has p rows
and q columns in common with the inserted one, is found. The found OP-Cluster
could have more conditions than the inserted one. In that case it may have fewer
supports than the inserted one. We define the accuracy to be,

accuracy = (
p

k
+

q

l
)/2 (3)

When the exact OP-Cluster is found, the accuracy is 1. In other cases the accu-
racy is proportional to the volume of the overlapping part between the embedded
OP-Cluster and the found one.

Test For Effectiveness. Number of supporting rows and length of frequent
order relative to the size of dataset are the two important factors which effect the
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Table 1. Result on varying the size of the dataset and the inserted OP-Cluster

100 × 30 200 × 30 500 × 30
20 × 15 100% 100% 96.5%
40 × 10 100% 100% 100%
200 × 15 – 100% 100%

(a) (b)

Fig. 6. Scale-up experiments. Response time V.S. (a) number of rows of dataset,
(b)number of columns involved in OP-Cluster.

performance. To test the effectiveness we run the algorithm with combinations of
different sizes of datasets and OP-Clusters. For the OP-Clusters we also change
the ratio of rows to columns.

Table 1 shows the result. Rows of the table show the size of inserted cluster
and columns show the size of the original dataset. Average accuracy of each case
of 10 runs was shown. Our method works very well in nearly all cases, especially
when size of inserted OP-Cluster is significant to size of original dataset. 20×15
OP-Cluster was exactly found for 9 out of the 10 runs when it is inserted into
a 500 × 30 data matrix. And in another case our algorithm finds a 6 × 16 OP-
Cluster, which covers all the columns involved in the inserted OP-Cluster.

Test For Scalability. The scale-up properties of the algorithm were analyzed
by varying size of dataset and embedded cluster. We report the time cost for
the first run. Figure 6(a) shows the result when varying the number of rows of
dataset. A 50×20 OP-Cluster was inserted into datasets which have 50 columns
but increasing number of rows from 100 to 1000. Figure 6(b) shows the result
when increasing the number of columns involve in the OP-Cluster. An OP-
Cluster with 200 supports was inserted into 1000× 50 datasets. The number of
conditions involve was increased from 5 to 40. Our algorithms got high precision
almost in all cases and scale linearly with size of dataset and size of OP-Cluster.

4.2 Microarray Data

In addition to simulated datasets, we run our algorithm on the breast tumor
dataset from Chen et al. [17]. This dataset has 3,226 genes and 22 tissues. Among
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Table 2. Comparison of result significance with OPSM algorithm and OPC-Tree
algorithm. (N/A: not available)

Number of tissues Number of Max supporting rows
CFPS OPSM OPC-Tree

4 771 347 690
5 142 N/A N/A
6 124 42 126
7 32 8 47

(a) (b)

Fig. 7. (a) The largest 5-tissue OP-Cluster, (b) the largest 6-tissue OP-Cluster

the 22 tissues, there are 7 brca1 mutations, 8 brca2 mutations and 7 sporadic
breast tumors. Our experiments demonstrate the power of finding biological OP-
Clusters in the gene expression data. We compared our result with that from
the OPSM algorithms of Ben-Dor et al. [9] and OPC-Tree of Liu et al. [13].

Firstly, we report the significance of our clusters in table 2 with compar-
isons with other two algorithms. Our clustering algorithm generates much more
significant clusters than OPSM. It costs only 7.17 seconds for the finding the
first 20 OP-Clusters. These OP-Clusters cover all the 22 tissues and 74.3% of
the genes. Ben-Dor et al. reported only three clusters with size 4 × 347, 6 × 42
and 8 × 7 respectively. However, our OP-Clustering algorithm was able to find
4 tissues clusters supported by a maximum of 771 genes, which doubles the
number of genes of the result of OPSM and also outperformed OPC-Tree. Our
algorithm also found 5-tissue clusters with a maximum support of 142 genes.
P (5, 142, 3226) ≈ 1.1659e−55 that means the cluster has very high significance.
5-tissue clusters were not reported by OPSM and OPC-Tree. The order imposed
on these five tissues are interesting, 3 brca2 mutations show lower expression,
1 brca2 mutation in the middle and 1 sporadic breast tumor shows the highest
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expression. This result suggest these 142 genes has different expression levels
in these tissues. Figure 7 shows the largest 5-tissue and 6-tissue OP-Clusters
and type of the tissues involved. No OP-Clusters with more than 7 tissues were
reported. Since our algorithm is good at finding the statistical majority. Larger
clusters would be found first. And we only process the first 20 clusters, small
cluster would lose the chance of being found.

5 Discussion

Order preserving clustering has been used in many applications to capture the
consistent tendency exhibited by a subset of objects in a subset of dimensions
in high dimensional space. We proposed a heuristic approach CFPS which dis-
covers the OP-Clusters by finding the frequent orders using a top-down scheme
in a statistical way. The method is easy to use with a low computation and
space cost. Few parameter has to be initialized for the algorithm. We define
the significance of an OP-Cluster and by it we can discriminate the meaning-
less OP-Clusters constructed by chance. The algorithm works very well in the
experiment. It scale linearly to the size of the dataset and the size of the clus-
ters. For the real gene expression profiles our method outperform OPSM and
OPC-Tree in finding significant clusters. But the nature of NP-hardness of this
problem implies that there may be sizeable OP-Clusters evading the search by
any efficient algorithm.

There are several extensions we can make based on our algorithm. Although
we permit exchangeable orders for conditions with very close values, the require-
ment on exactly the same order is still sharp in some applications, especially
when noise or outlier exists. One extension of the current model is to explore
similar but not exact the same order among conditions. There are many over-
lapping OP-Clusters in our result. Further steps could be taken to merge some
of the overlapping clusters to form new clusters with more columns.
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Abstract. The gene-label correlation provides an effective measure of
the relevancy of a gene. However, this measure evaluates genes on an in-
dividual basis, and the gene sets thus obtained may exhibit severe redun-
dancy. In this study, we propose a new correlation heuristic for set-based
gene selection, with the goal of alleviating the redundancy problem. The
new correlation heuristic consists of two components that account for
gene relevancy and redundancy respectively. The relevancy of a gene is
evaluated in terms of its correlation with class label on an individual ba-
sis, while the redundancy of a gene with respect to a given gene subset
is measured by its correlation with a new dimension built upon the gene
subset. The new correlation heuristic retains the simplicity of individual
gene evaluation and the redundancy handling capacity of set-based gene
evaluation. Two different ways of using the relevancy and redundancy
measures are presented in this study. One way is the maximization of
the ratio of relevancy measure to redundancy measure, and another way
is the maximization of the relevancy measure subtracting redundancy
measure. Experimental studies on six gene expression problems show
that both criteria produce excellent results.

1 Introduction

Gene selection has been an active research area since the birth of the gene
microarray technology, and a variety of gene selection algorithms have been pro-
posed. The various gene selection algorithms can be classified into two categories,
namely individual gene selection (see for example [8,4,7,15]) and gene subset se-
lection (see for example [14,11,6,10,12,21,20,1]). The two types of gene selection
algorithms often serve different purposes. If gene selection is for efficient pattern
classification or class prediction, subset-based gene selection should be employed.
This is because a gene subset consisting of top individually ranked genes may far
from optimal due to the severe redundancy existed. Whatever category a gene
selection algorithm belongs to, it involves an evaluation criterion to measure the
goodness of an individual gene or a subset of genes. A variety of evaluation crite-
ria have been used in the gene selection algorithms mentioned above, motivated
by different considerations. These include t-test, F -test, Fisher ratio, entropy,
cross validation error, Bayesian error estimation, loss functions of regression,
and support vector machine (SVM) criteria etc.

J.C. Rajapakse, B. Schmidt, and G. Volkert (Eds.): PRIB 2007, LNBI 4774, pp. 230–241, 2007.
c© Springer-Verlag Berlin Heidelberg 2007
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Correlation measures have also been used for gene evaluation and selection.
To minimize gene redundancy, one available correlation measure is the set-based
correlation heuristic proposed by [13], where the merit of a feature subset is
evaluated using the ratio of the average feature-label correlation to the average
feature-feature correlation. Similar measures were also proposed in [3]. Another
correltaion-based algorithm is the two-phase relevancy-redundancy analysis pro-
posed by [19], where relevant genes are first selected through individual relevancy
analysis, and redundant genes are then removed through Markov blanket-based
redundancy analysis. But our experiment studies show that this algorithm could
over-prune and the number of genes finally obtained might be insufficient.

In this study, we propose a new correlation heuristic for forward, i.e. bottom-
up, gene selection. The new correlation consists of two components accounting
for relevancy and redundancy respectively. The relevancy of a gene is evaluated
individually in terms of its correlation with class label, while the redundancy of
a gene with respect to a given gene subset is measured by its correlation with
the output of the classifier built upon the gene subset. This way of evaluating
redundancy is an outstanding character of the new correlation heuristic. The
rationale lies in the fact that the major discriminative information underlying
the gene subset is captured by the classifier, and thus the correlation between
the candidate gene and the output of the classifier reflects the redundancy of
the candidate gene with respect to the gene subset. Two ways of using relevancy
and redundancy measures are presented. One is the ratio of relevancy measure
to redundancy measure, and another is the relevancy subtracting redundancy.
Through maximizing the two criteria, genes with high relevancy and minor re-
dundancy could be selected.

The new correlation heuristic inherits the simplicity of individual gene evalua-
tion and the redundancy handling capacity of set-based evaluation. Experimental
studies show that both criteria produce excellent results.

2 Correlation-Based Relevancy and Redundancy
Measures for Gene Selection

2.1 Relevancy and Redundancy Measures

Assume there are N training data pairs:

{x(1), y(1)} , {x(2), y(2)} , . . . , {x(N), y(N)}
where y(k) denotes the class label of sample k, with value of either +1 or −1.
x(k) is the feature vector of sample k consisting of n genes:

x(k) = [x1(k), x2(k), . . . , xn(k)]

The gene-label correlation is defined as the correlation between a gene and the
class label:

ryxi =
1

N − 1

∑N
k=1 xi(k)y(k)

σxiσy
(1)
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where σxi and σy denote the standard deviation of gene xi and class label y re-
spectively. The gene-label correlation reflects the predictive power, or relevancy,
of a gene and could be used to identify biologically related genes of certain
biological phenomenon of interest. However, the correlation criterion Eqn (1)
evaluates genes on an individual basis, without considering correlations between
genes. Severe redundancy might exist if it is used to select gene subsets. To
achieve good pattern classification results, an ideal gene subset should possess
the following properties:

(i) having maximum relevancy;
(ii) having minimum redundancy.

To yield gene subsets with maximum relevancy and minimum redundancy,
we can select gene subsets that maximizes the ratio of relevancy measure to
redundancy measure or the difference between the two measures [13,3].

In a forward gene selection algorithm, the gene subset is built up step by step,
by adding one gene at one step. Assume m genes have already been selected:
sm = {x1, x2, . . . , xm}, the objective is to select the next best gene. To select
the gene with maximum relevancy and minimum redundancy, we can evaluate
and select genes using the following criteria

J1 =
Ryxi

Rsmxi

(2)

or
J2 = Ryxi − Rsmxi (3)

where Ryxi denotes the relevancy measure of gene xi, and Rsmxi denotes redun-
dancy measure of gene xi with respect to gene subset sm. The gene with the
maximum J1 or J2 should be selected.

The relevancy of a gene can be easily measured in terms of its correlation
with class label as in Eqn (1) or other measures such as Fisher ratio. The major
issue here is how to evaluate the redundancy of xi with respect to the given
subset sm. In [13] and [3], the redundancy is measured in terms of the average
correlation between candidate xi and those in the gene subset selected sm. Next,
we propose a new approach to redundancy evaluation.

2.2 A New Approach to Redundancy Evaluation

The basic idea of the new way of evaluating redundancy of a candidate gene
with respect to gene subset sm is to project data from the m-dimensional space
to a new one-dimensional space using a linear transform, and then measure the
redundancy of a candidate gene based on its correlation with the new dimension.
Assume the linear transform is given by:

zm(k) =
m∑

j=1

wjxj(k) (4)
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where wj , j = 1, 2 . . . , m are the coefficients of the linear transform. Eqn(4) is
such a transform that the major discriminative information underlying the m
dimensions, i.e. m genes in sm, is compressed onto zm. The linear transform
that projects data from m-dimensional space to one-dimensional space can be
obtained by the support vector machine (SVM) method because the SVM clas-
sifier captures the major discriminative power underlying sm.

The redundancy of xi with respect to gene subset sm is measured using the
correlation between xi and zm. The rationale of the new way of evaluating redun-
dancy can be explained from the point of view of variable selection in multiple
regression. Assume the regression of class label on the m features in sm is as
Eqn (4), then the resultant regression error is given by:

e(k) = y(k) − zm(k) (5)

The variable to be selected next should have maximum correlation with the
regression error. Assume

y = [y(1), y(2), . . . , y(N)]T

e = [e(1), e(2), . . . , e(N)]T

zm = [zm(1), zm(2), . . . , zm(N)]T

xi = [xi(1), xi(2), . . . , xi(N)]T

The correlation between xi and e, denoted by rexi is given by:

rexi =
1

N − 1
xT

i e
σeσxi

=
1

N − 1
xT

i y − xT
i zm

σeσxi

(6)

where σe denote the standard deviation of error signal e. If genes, class label
and sample projections on the new dimension are normalised to zero mean and
unit standard deviation, Eqn (6) can be written as

rexi =
1
σe

[ryxi − rzmxi ] (7)

where ryxi and rzmxi denotes the correlations between xi and class label and
the output of the classifier respectively. To ensure the minimum regression error
after adding the new feature, selection of the new feature should be based on
maximization of rexi . A comparison of Eqn (7) with Eqn (3) shows that if the
correlation between xi and class label is used to evaluate the relevancy of xi,
then the redundancy Rsmxi can be measured using the correlation between gene
xi and the output of the classifier built upon sm.

The heuristic J1 and J2 can be rewritten as:

J1 =
|yT xi|
|zTxi| (8)
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J2 = |yT xi| − |zT xi| (9)

where |.| denotes the absolute value. This is because the correlations can take
both positive or negative values.

J2 actually can be modified by putting a weighting element on the redundancy
measure:

J∗
2 = |yT xi| − λ|zT xi| (10)

where λ denotes the weighting element.
The main characteristic of the present study is that the redundancy of a gene

with respect to a gene subset selected is measured using the correlation between
the gene and a new dimension built upon the gene subset. An important issue
here is how to create the new dimension. As analysed above, the correlation
measure Eqn (3) is equivalent to regression error based feature evaluation when
the role of the previously selected features is controlled. This suggest that we may
control the effect of the previously selected gene subsets when a new dimension
is created after a new gene is added. This is briefly described below. A new
dimension, named z2, is first created using x1 and x2. Selection of the third gene
is based on the correlation criteria where the redundancy of a candidate gene
is measured using the correlation between the candidate gene and z2. After the
3rd gene, say x3 is selected, a new dimension z3 is created using x3 and z2. In
this process, the creation of a new dimension is always done in a 2-dimensional
space. And the creation can be based on different approaches such as support
vector machine (SVM).

Due to small sample size and very high dimensionality in gene expression
data, the training data could be mapped to the class label. Thus, the redundancy
measure would approaches the relevancy measure and a zero value of the criterion
would be obtained. To overcome this problem, the new dimension created at each
step is rotated by an angle. Taking zm−1, xi and zm as an example, where zm

is created by zm−1 and xi.

zm(k) = wm1zm−1(k) + wm2xi(k) (11)

Taking the zm−1 as an reference, the angle of the new dimension is given by:

α = arctan
(

wm2

wm1

)
(12)

After a few genes are selected, the sample projections on zm−1 are very close
to class labels, and play dominant role in creating zm. Thus, the value of wm1 has
a much greater amplitude than wm2, and the angle becomes very small. Hence
we have:

α ≈ wm2

wm1
(13)

To rotate the new axis, we can reduce the value of wm1 to wm1/γ, where
γ > 1. Thus, the new angle is given by:

β ≈ γ
wm2

wm1
= γα (14)
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The new dimension is usually obtained by optimizing certain criterion. The
transform obtained is therefore optimal in the sense of maximum separating
margin in support vector machine, maximum class separability in Fisher’s lin-
ear discriminant analysis, and minimum regression error in least mean square
estimation etc. The rotation introduce with deteriorate the optimality, and is
therefore can be regarded as a regularization.

Criterion J1 and J∗
2 consist of two components. One component accounts for

the relevance of the gene, and another component accounts for the redundancy
of the gene with respect to gene subset sm. The relevance is measured on an
individual basis, while the redundancy is measured on a set basis. The merit
of this way of evaluating a candidate gene is that it retains the simplicity of
individual gene evaluation and the capacity of redundancy handling of set-based
gene evaluation.

2.3 The Correlation Criteria-Based Gene Selection Algorithm

The procedure of forward gene selection based on the correlation J1 and J∗
2 is

summarized below:

(i) Normalise data including class label to zero mean and unit standard devia-
tion.

(ii) Evaluate the correlation between class label and each of the n genes in the
candidate gene pool: x1, x2, . . ., xn. Identify the gene that has the maximum
correlation measure, say xj , add it to the gene subset and remove it from
the candidate gene pool. Let z = xj .

(iii) Evaluate the correlation between z and each of the n − 1 genes in the can-
didate gene pool, and calculate J1 or J∗

2 using Eqn (8) or (10). Identify the
gene having the maximum measure, say xi, add it to the gene subset and
remove it from the candidate gene pool.

(iv) Train the linear SVM classifier using the genes in the gene subset selected and
denote the decision value of classifier for the training samples as z. Normalise
z to zero mean and unit standard deviation. Evaluate the correlation between
z and each of the n−2 genes in the candidate gene pool, and calculate J1 or
J∗

2 using Eqn (8) or (10). Identify the gene having the maximum measure,
say xk, add it to the gene subset and remove it from the candidate gene
pool.

(v) Step (iv) is repeated until a stopping criterion, say the number of genes
selected, is satisfied.

To identify the m + 1th gene from a candidate gene pool of n − m genes
at step m + 1, the computations involved include training a linear classifier
such as a linear support vector machine (SVM) once and performing n − m
vector product in N -dimensional space, where N is the training sample size.
Apparently, the computational complexity of the proposed method is very
limited.
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3 Experimental Studies

In the experiment, the performance of the proposed correlation heuristic was
studied. For comparison purpose, the two-phase relevancy-redundancy analysis
proposed in [19] and set-based correlation heuristic proposed in [13] were also
studied. In addition, the recursive feature elimination (RFE) algorithm [12],
which is often considered as a benchmark algorithm, was also studied.

The performance of these gene selection algorithms was evaluated in terms of
classification error rate. The study in [2] revealed that error estimation based on
cross validation including leave-one-out and repeated k-fold cross validation may
exhibit excessive variability. In this study, .632+ bootstrapping [5] was used. In
the bootstrap testing, 200 replica were generated to estimate the error rate, and
the splits of training and test data in the 200 replica were kept identical during
the testing of the gene selection algorithms.

Six gene expression datasets were used to test the performance of the proposed
algorithm. The eight datasets are summarized in Table 1:

Table 1. Datasets description

Datasets Original sources Genes

Leukaemia [8] 7129

Breast cancer (ER) [18] 7129

Breast cancer (LN) [18] 7129

Lung cancer [9] 12533

CNS tumour [16] 7129

Breast cancer [17] 24481

Each of these datasets was standardized to zero mean and unit standard
deviation across genes. Since the dimensionality (i.e. the number of genes) of
gene expression data is very high, and most of these genes are irrelevant to
the discriminant task, a pre-selection procedure was employed to reduce the
number of candidate genes to 1000 based on Fisher’s ratio, which is an individual
gene ranking criterion. All the experiments and comparisons in this work were
conducted on the pre-selected data.

The experimental results on the 6 datasets are shown in Figures 1-6 respec-
tively. On each dataset, 4 algorithms were tested, including the recursive feature
elimination (RFE), correlation-based feature selection (CFS), and the two new
correlation heuristics Eqn (8) and Eqn (9), named as CH1 and CH2 respectively.
In the experimental study, the weight λ on the redundancy measure in criterion
J∗

2 was set to 2, and the weight on slack variable in RFE was set to a wide range of
values, as small as 0.001 and as great as 100, but the results were almost identical.

Across the 6 problems, the two-phase relevancy-redundancy analysis produced
gene subsets consisting of just a few genes since the Markov blanket principle
removed most of the candidate genes while the other 3 algorithms used the
number of genes selected as the stopping criterion. As shown in Figures 1-6, the
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Fig. 1. Comparison of RM and RRM with RFE in Leukaemia problem
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Fig. 2. Comparison of RM and RRM with RFE in Breast Cancer (ER) problem
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Fig. 3. Comparison of RM and RRM with RFE in Breast Cancer (LN) problem
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Fig. 4. Comparison of RM and RRM with RFE in Lung Cancer problem
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Fig. 5. Comparison of RM and RRM with RFE in CNS Tumor problem
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Fig. 6. Comparison of RM and RRM with RFE in Breast Cancer problem

RFE algorithm outperform the CFS algorithm in all the 6 problems. However,
CH1 and CH2 outperform both CFS and RFE substantially. The results of CH2
are a bit inferior to those of CH1, this is probably because the introduction of
the weight element λ improves the adaptability and flexibility of the correlation
heuristic.



240 K.Z. Mao and W. Tang

4 Conclusions

In this study, we have proposed a new correlation heuristic for efficient gene
selection, where relevancy and redundancy components of a gene are considered
explicitly in merit evaluation. Two formulae have been presented by different
way of combining the two components. The proposed correlation heuristic re-
tains the simplicity of individual gene evaluation and the capacity of redundancy
handling of set-based gene evaluation. Experimental studies have shown that
the correlation heuristic produces gene subsets leading to excellent classification
accuracy.
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Abstract. This paper introduces a novel gene selection method incorporating 
mutual information in the support vector machine recursive feature elimination 
(SVM-RFE). We incorporate an additional term of mutual information based 
minimum redundancy maximum relevancy criteria along with feature weight 
calculated by SVM algorithm. We tested proposed method on colon cancer and 
leukemia cancer gene expression dataset. The results show that the proposed 
method performs better than the original SVM-RFE method. The selected gene 
subset has better classification accuracy and better generalization capability.  

Keywords: Gene selection, mutual information, minimum redundancy, 
maximum relevancy, SVM-RFE, cancer classification. 

1   Introduction 

DNA-microarray has emerged as a very powerful method to analyze gene expression 
of cells. This high throughput technology enables simultaneous monitoring of 
expression level of thousand of genes and hence results in a vast pool of data. 
Detecting differences among the gene expressions can be very useful in disease 
diagnosis and distinction of specific tumor type. Most of gene expression datasets 
contain small number of samples and very high number of genes. For accurate 
classification, it is extremely imperative to select relevant genes. Because it is 
possible that totally irrelevant genes are selected, the classifier still produces very 
high classification accuracy. 

Broadly, two approaches of gene selections appear in machine learning and 
bioinformatics literature: the filter and wrapper methods [1-2]. Filter methods are 
purely based on the statistical correlations and independent of the classifier used. 
They evaluate the goodness of the feature subset only by intrinsic characteristic of the 
data. Based on the relation of each single gene with class labels by the calculation of 
simple statistical measures computed from the empirical distribution, feature ranking 
is performed. Some of the statistical measures are Shannon-entropy, Euclidean 
distance, Kolmogorov-dependence, t-score, P-metric, mutual information etc [3].     

On the other hand, wrapper methods rank features based on their effect on the 
classification accuracy. In this method, the feature selected will be highly dependent 
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on the classification algorithm used. It is claimed by many authors that wrapper 
approach obtains better subset of predictive genes than filter approach [3]. Both filter 
and wrapper methods have their own advantages and disadvantages. Filters are 
usually simple and have less computational cost but fail to provide a small subset of 
genes. Wrappers are more computationally complex and gene subset selected may not 
generalize with other classification algorithm as it is highly dependent on the 
classification algorithm used in feature ranking. Different wrapper approaches are 
proposed by various authors [4-10].  

Support Vector Machine - Recursive Feature Elimination (SVM-RFE) is one of the 
most successful wrapper method based algorithm in the feature (gene) ranking and 
hence reduction in the dimensionality of the dataset [10]. Multiple SVM-RFE 
(MSVM-RFE) has shown improvement on the classification accuracy over SVM-RFE 
[7]. Similarly like SVM-RFE, [6] presented Recursive Cluster Elimination (RCE) 
algorithm. Though SVM-RFE is very powerful method, it does not ensure to select 
the genes which are maximally relevant to the class and at the same time possesses 
minimum redundancy among them as feature selected are highly dependent on the 
weights derived from SVM algorithm. 

Maximum gene relevancy and minimum gene redundancy is very important for 
gene selection as it can result in more balanced coverage of the feature space, 
capturing broad characteristics of the dataset and improvement in the classification 
accuracy. Minimum Redundancy Maximum Relevancy (MRMR) algorithm was 
proposed for maximizing gene relevancy and minimizing the gene redundancy [11-
13]. They had ranked all the genes and according to information theoretic criteria and 
selected the top ranked genes for the classification. Another approach in degree of 
differential prioritization (DDP) criteria was proposed to strike the balance between 
relevancy and redundancy [14]. 

In this paper, we propose a novel hybrid approach to incorporate MRMR criteria in 
SVM-RFE algorithm itself. Mutual information based additional term will be added 
along with the SVM-ranking criteria. This additional term will be useful in achieving 
maximum relevant and minimum redundant gene subset without sacrificing on 
classification accuracy. The resulting gene subset may represent whole gene 
expression dataset broadly and may have better generalization capabilities. 

The rest of the paper is organized as follows: in Section II, we will review 
Minimum Redundancy and Maximum Relevancy (MRMR) criteria and SVM-RFE. In 
Section III, we will propose hybrid algorithm of MRMR with SVM-RFE. Section IV 
will discuss the experimental procedure to test the algorithm on various gene 
expression datasets and results. Finally, in Section V we analyzed the results and 
conclude the paper. 

2   Method 

2.1   Minimum Redundancy Maximum Relevancy (MRMR) Criteria 

Here, this criteria attempts to find the subset of genes having maximal relevancy to 
target class and least redundant among themselves. If a gene is expressed randomly or 
uniformly in different class, its relevancy to the respective class will be zero, i.e. its 
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mutual information with the class will be zero. Strongly expressed gene in one class 
will have larger mutual information with the respective class.  

Let S = {xi: i = 1,2,…,n} be subset of dataset where i  is the gene and xi is 
expression of gene i. Each xi can be represented as (xi1, xi2,…, xiJ), where xij is the 
expression of ith gene in jth sample. If target classes are c = {c1,c2,…,cK}, where K is 
number of class, then I(c;xi) will quantify the relevance of gene i to the classification 
task. Thus the by maximizing the total relevance of all genes in subset S should be the 
maximum relevance criteria: 

1
max  ,   ( ; )

i

i i i

x S

V V I c x
S ∈

= ∑         (1) 

Here, S  is number of genes in subset S.  

It is possible that the features selected from the maximum relevancy criteria are 
highly redundant. Removal of features from this redundant set will not affect the 
discrimination power. The ‘minimum redundancy’ means select the features in such a 
way that they are mutually maximally dissimilar in the subset. Mutual information 
can also be used as a measure to find similarity between two features. Hence, 
following redundancy removal criteria can be used to achieve mutually exclusive 
features:  
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,
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It is necessary to optimize both maximum relevancy and minimum redundancy 
criteria to get the best feature subset. To achieve so, we will need a single objective 
function which can describe both the criteria. Such simplest objective criteria can be 
written as,  

max         max( )i

i i

i

V
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W
−
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⎜ ⎟
⎝ ⎠

    (3) 

In present work, we have used the quotient objective criteria with SVM-RFE.  

2.2   SVM-RFE 

To select the genes for accurate cancer classification, SVM-RFE algorithm was 
proposed by [10]. The algorithm produces nested subset of the genes by backward 
elimination, starting with all the features and removing one feature in every iteration.  
Here, the feature removal is based on the SVM ranking criteria, the ith  feature with 
the smallest ranking score ci = (wi)

2 is eliminated, where wi is the corresponding 
weight of ith feature calculated from SVM. 

The reason for choosing ci = (wi)
2 as ranking criteria is the feature removed by this 

criteria will have least change in the objective function. The objective function in the 

SVM-RFE is 
21

2
J w= . Optimal Brain Damage (OBD) algorithm [15] has explained 
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this effect. It approximates the change in objective function caused by removing the 
feature by second order Taylor series expansion of the objective function, 

2

2

2
( ) ( )

i i

i i

J J
J i w w

w w

∂ ∂
Δ = Δ + Δ

∂ ∂
 (4) 

At the optimum, first derivative can be neglected and using 
21

2
J w= , equation 

(4) becomes 

2( ) ( )
i

J i wΔ = Δ  (5) 

The SVM-Recursive feature elimination procedure can be described as follows: 
 
Start:  Ranked feature set R = [ ] and selected feature subset S = [1, 2,…, n] 
      Repeat until all features are ranked 
               a) Train linear SVM with feature set S in input variable     
     
               b) Compute the weight vector 

i i i

i

w y xα= ∑  

               c) Compute the ranking score of features 

( )2

i i
c w=  

               d) Select the feature with smallest ranking score   
arg min( )e c=  

               e) Update R = [e,R]; S = S – [e] 
 
Output: Ranked feature set R. 

3   SVM-RFE with MRMR Criteria 

The final subset obtained from the SVM-RFE algorithm may contain many redundant 
genes. Many biologically important genes may have lost because of less weight 
compare to these redundant features. We propose to integrate MRMR criteria with the 
weight criteria in SVM-RFE. MRMR criteria will make the subset less redundant and 
SVM-RFE weight will make sure the selected genes are useful in classification. The 
final selected gene subset will represent best mutually exclusive genes. The final dataset 
obtained will represent the whole dataset better than obtained by SVM-RFE alone.   

The detailed SVM-RFE algorithm with MRMR criteria is discussed below: 
 
Start: Ranked feature set R = [ ] and selected feature subset S = [1, 2,…, n] 
 
          Repeat until all features are ranked 
            a) Train linear SVM with feature set S in input variable and calculate the weight of    
                 each vector wi,svm     

, i i i

i

i svm
w y xα= ∑  



246 P.A. Mundra and J.C. Rajapakse 

            b) Calculate the class relevancy of each feature and mutual information among features     
                using equation (2) 

,

,

( ; )
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            c) Compute the weight vector 

, ,

max( ) max( )

i svm i MI

i

svm MI

w w
w

w w
= +  

      
            d) Compute the ranking score of features 

( )2

i i
c w=  

           e) Select the feature with smallest ranking score   
arg min( )e c=  

      
f) Update R = [e,R]; S = S – [e] 

 
Output: Ranked feature set R. 

4   Experiments 

4.1   Data  

To evaluate the performance of MRMR based SVM-RFE, experiments were carried 
out on two most popular gene expression dataset, leukemia cancer dataset [16] and 
colon cancer dataset [17]. For the present study, we had only taken available training 
data of the leukemia dataset. These datasets were obtained from http://ligarto.org/ 
rdiaz/Papers/rfVS/randomForestVarSel.html [9]. Both the dataset were further 
divided in two separate training and testing dataset. The details of the dataset are 
given in Table 1. 

Table 1. Sizes of training and test sets, number of gene in two gene expression dataset  

Dataset Training Samples Testing Samples Total Number of 
Genes 

Colon 42 20 2000 
Leukemia 24 14 3051 

4.2   Preprocessing  

The dataset was randomly divided into training and testing set with maintaining the 
class ratio in both the sets. Training dataset was normalized to zero mean and unit 
variance. These continuous datasets were directly used in SVM-RFE after 
normalization.  
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It is difficult to find the mutual information of two continuous features. Hence for 
the simplicity of calculating mutual information, training dataset was discretized. 
Discretization will also help in the noise reduction. Mean (µ) and standard deviation 
(σ) of each individual gene expression variable was used to discretize the observation. 
Following criteria is then used to categorize the data: Data larger than µ + σ/2 will be 
changed to state 2 ; Data in between µ + σ/2 and µ - σ/2 will be transformed to state 0 
; Data smaller than µ - σ/2 will be transformed to state -2.  

4.3   Parameter Estimation 

SVMs performances depend upon its two critical hyperparameters, the kernel function 
and the regularization parameter C. It is imperative to select these parameters 
carefully. In present study, linear SVMs were used, which require only C parameter to 
tune. C values were chosen from finite set {2-20,….,20,…,215}. This set was used for 
both recursive feature elimination (both from SVM-RFE and hybrid of mutual 
information and SVM-RFE) and performance evaluation. 

To estimate the prediction generalization error, CV can be used. The resulting 
estimate of generalization error is often used as model selection criteria. Model that 
has the smallest generalization error are chosen. In k-fold CV, the data instances are 
divided into k – mutual folds with equal size. Model is trained with k-1 folds and 
tested on omitted fold. This average testing error, calculated by testing on each fold, 
represents the generalization error estimate. Another important variant of k-fold CV is 
‘Leave-one-out’ method. In this method, k equals to the number of data instances. 
Classifier is built with all samples except one and tested on the omitted sample. 

As sample size is small and class imbalance prevalent in most of the dataset, we 
used Matthew’s Correlation Coefficient (MCC) with 10 fold cross validation. After 
each 10 fold CV, we summed the true positive (TP), true negative (TN), false positive 
(FP) and false negative (FN). These values were used to calculate MCC1 parameter. 
MCC will vary between -1 to 1. Higher the MCC value means classifier has high 
sensitivity and specificity.  

To increase the speed of the numerical simulations with both SVM-RFE and 
proposed hybrid method, we eliminate m features each time when number of features 
n is large in recursive feature subset S. If n > 10000, we choose m = 100, if 
1000<n<10000, m will be 10, and if n < 1000, m = 1. 

4.4   Testing 

It is necessary to check the validation accuracy of the classifiers as many times 
classifier fits training data extremely good but their prediction accuracy on unseen 
data may be very poor. However, the training and testing set of gene expression data 
are small and test error may not represent the true validation accuracy due to 
“unfortunate” partition of training and testing sets. To avoid such situation, we merge 
the training and testing datasets and then partition the total samples again in training 

                                                           

1 
( )( ) ( )( )

( )( )( )( )
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TP FP TP FN TN FP TN FN

−
=
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and testing sets by random sampling. This process is performed 100 times and for 
each time, classifier is trained on the training set and tested on the corresponding 
testing set. The test error, sensitivity and specificity were computed for these 100 
trials.  

The feature ranking is carried out using only the training data. The goodness of 
feature subset is evaluated using linear SVM classifier trained with ranked genes as 
input variables. No data discretization was done for testing. For each gene expression 
dataset and method, we test feature subsets with number of genes ranging from 1 to 
100. We take the gene subset with the least average test error as the best feature 
subset. This gene set is used to calculate the performance of the each method in terms 
of sensitivity and specificity on each gene expression dataset. 

To compare the results of the proposed algorithm with MRMR filtering, we ranked 
the features using program available at http://research.janelia.org/peng/proj/mRMR/ 
index.htm [13]. We obtained top 100 features from the training dataset for both the 
gene expression data. The classification accuracy of gene subset is evaluated with 
SVM algorithm.  

In all feature selection methods and testing the classifier, we had used LIBSVM – 
2.83 software [18].  

4.5   Results  

We applied proposed hybrid of mutual information and SVM-RFE on Colon cancer 
and Leukemia cancer gene expression dataset. To compare our method, we also tested 
with SVM-RFE and MRMR method. The results are shown in the Tables 2 and 3. The 
results are shown in terms of number of genes, overall accuracy of the classifier and 
class-wise accuracy (sensitivity and specificity). In Figs 1-2, average test error of 
linear SVM classifier on selected gene subsets with SVM-RFE, MRMR + SVM and 
hybrid method is plotted. 

From Table 2-3, it is clear that proposed hybrid of mutual information and SVM-
RFE performs better than the SVM-RFE in both Colon cancer and Leukemia gene 
expression dataset. Apart from accuracy, number of genes in the best subset of both 
dataset is also small compare to SVM-RFE. Comparing with MRMR method, hybrid 
method performs better in colon cancer dataset and results are comparable in the 
Leukemia dataset.  

Table 2. Performance of SVM classifier with feature selection by SVMRFE, hybrid of SVM 
and MI based RFE and MRMR method on Colon Cancer gene expression dataset 

 Number of 
genes 

Accuracy 
(%) 

Sensitivity  
(%) 

Specificity 
(%) 

MRMR - SVM 13 87.7 ± 7.12 86.2 ± 8.32 89.13 ± 8.32 
SVM-RFE 74 88.5 ± 5.97 85.6 ± 12.19 90.19 ± 7.48 

SVM-RFE with 
MRMR 

51 89.3 ± 6.71 85.98 ± 12.49 91.44 ± 7.91 
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Fig. 1. Average misclassification error of gene subset selected by SVMRFE, hybrid of SVM 
and MI based RFE and MRMR method on 100 random testing with Colon Cancer gene 
expression dataset 

Table 3. Performance of SVM classifier with feature selection by SVMRFE, hybrid of SVM 
and MI based RFE and MRMR method on Leukemia Cancer gene expression dataset 

 Number 
of genes 

Accuracy  
(%) 

Sensitivity  
(%) 

Specificity  
(%) 

MRMR - SVM 74 97.6 ± 4.19      99.36 ± 3.78 97.04 ± 5.5 
SVM-RFE 44    97.13 ± 4.67 100 ± 0     96.13 ± 6.23 
SVM-RFE 

with MRMR 
21    97.27 ± 4.75 99.25 ± 2.5     96.63 ± 5.92 

5   Discussion and Conclusion 

As seen the Table 2-3, the results are better than SVM-RFE both in terms of small 
number of genes and better classification accuracy. Results are comparable with 
MRMR based feature ranking. MRMR is basically a type of filter method. Mostly,  
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Fig. 2. Average misclassification error of gene subset selected by SVMRFE, hybrid of SVM 
and MI based RFE and MRMR method on 100 random testing  with Leukemia Cancer gene 
expression dataset 

filter method gives large gene subset for comparable classification accuracy with 
wrapper method. Small number of gene in subset will produce inferior classification 
accuracy in filter approach. The results with colon cancer and leukemia gene 
expression dataset show exactly the same nature. 

From the result table, we observe that standard deviations of all performance 
measures (accuracy, sensitivity and specificity) over 100 times training and testing are 
large. In other words, the variability of single test is large and such test results are not 
fair performance reference due to possible ‘unfortunate’ partitioning. When dataset is 
small, the risk of ‘unfortunate’ partitioning increases.  

In our proposed hybrid method, advantage of both continuous data (in SVM 
feature weighting) and discrete data (for MRMR) is encoded. Hence, we believe that 
this ranking method is noise tolerant without affecting the continuous nature of the 
gene expression data.  

As seen from the Figure 1 and 2, hybrid method gave small classification error 
than SVMRFE and MRMR filtering in most part of gene subset tested. It means this 
method has better generalization capability. The proposed hybrid method selects the 
genes based on their effect on classification accuracy and make sure that they are least  
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redundant among themselves. As the gene subset selected is best representing the 
whole dataset and least redundant, better generalization was expected and hence seen 
in the results. We also believe that the gene subset selected by this method should 
give similar classification accuracy with other classifiers.  

Finally in conclusion, the gene subset selected by this method represents the 
broader class characteristics than SVMRFE. It will insure better screening of the 
dataset and better representation of whole dataset in small number of most relevant 
and least redundant gene subset.   
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Abstract. Human endogenous retroviruses (HERVs) are remnants of
ancient retrovirus infections and now reside within the human DNA.
Recently HERV expression has been detected in both normal and dis-
eased tissues. However, the patterns of expression of individual HERV
sequences are mostly unknown. In this work we use a generative mixture
model, based on hidden Markov models, for estimating the activities of
individual HERV sequences from databases of expressed sequences. We
determine the relative activities of sixty HERVs from the HML2 group in
five human tissues, i.e. we estimate the expression profile of each HERV.
This allows us to gain insight into HERV function.

1 Introduction

Human endogenous retroviruses (HERVs) are remains of retrovirus infections
that occured millions of years ago. They are viruslike DNA sequences that reside
within the human genome. HERV sequences form 8% of the human genomic
DNA [3,4].

Retroviruses can move and copy their DNA to other locations in the genome.
These copying events will eventually yield several mutated versions of the original
virus. A group of such sequences is called a HERV group and it may contain
hundreds of very similar sequences. Most of the HERV sequences are heavily
mutated and/or broken due to genomic rearrangements and have partially lost
the typical retroviral structure consisting of 4 genes (gag, pro, pol and env) and
two long terminal repeat sequences (LTRs), one at each end of the retrovirus
sequence.

In this paper we study the HML2 group because it is the youngest and as
such has the largest proportion of full length HERVs and the smallest number
of mutations. Thus, it has the most potential for containing active HERVs.

HERVs are interesting for two reasons: they can express viral genes in hu-
man tissues and their presence in the genome may affect the function of nearby
human genes. Retroviral activity might cause disease; retroviral mRNAs have
been detected in schizophrenia, autoimmune diseases and cancer [2,10] although
a causal role of HERVs in these conditions is highly uncertain. In addition, a
few retroviral genes have adopted functions beneficial to the human host [8].
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In this work we study activities of individual HERV sequences in various tis-
sues, i.e. will estimate the expression profile of each HERV. The profile contains
measurements from several tissues and thus enables us to study the differential
expression patterns of individual HERVs. This leads to better understanding
of the function of individual HERVs. For example, HERVs that are more/only
active in the brain tissue may have functions related to neurodegenerative dis-
eases or to normal brain functions. This profiling approach is widely used in the
study of human gene function, see for example [17]. In contrast, the only work
that we know of where individual HERVs have been studied in several tissues is
[16], where a small set of full-length HERV-K elements (HML2 is a subgroup of
HERV-K) were studied using a heuristic method.

We have earlier studied the overall expression of individual HERVs (one ex-
pression value for each HERV without distinguishing between different tissues
and conditions). In this work we extend the approach to estimation of expression
profiles over various tissues. Furthermore, we analyze the expression profiles of
individual HERV sequences. In contrast, most previous studies of HERV expres-
sion report activities only for HERV groups (e.g. [13]); the only exceptions we
know of are [6] where HERVs are searched from gene mRNAs but activities are
not compared across HERVs and [16] mentioned above.

To find evidence of HERV expression, we use a large public database of ex-
pressed sequence tags (ESTs). ESTs are short and noisy samples from mRNA
sequences. The amount of ESTs originating from a particular HERV is evidence
of its activity. However, it is nearly impossible to match an EST sequence to
only one HERV sequence: Each EST will match several HERVs very well due to
the similarity of the HERV sequences within a HERV group and the noise (se-
quencing errors) in the ESTs. We have introduced earlier a probabilistic model
[11] to handle the uncertainty in EST to HERV matching. In the methods sec-
tion we describe how this model can be used for estimating HERV expression
profiles. The expression profiles for the HERV sequences of the HML2 group are
presented in the results section.

2 Methods

In [11] a generative mixture model, based on hidden Markov models, for esti-
mating the activities of individual HERV sequences from ESTs was introduced.
Below we briefly describe this model and then move on to describe how it can be
used when the aim is to estimate expression profiles instead of overall expression
values.

The hidden Markov mixture model is a generative model for the set of EST
sequences. It is designed to mimic the actual EST generation from HERVs; each
mixture component is a hidden Markov model (HMM) for ESTs from a particular
HERV (See Fig. 1). The component HMM resembles the profile HMM [7], with
the exception that it is possible to jump from the start state to any of the match
states and from any match state either to the end or to a special EEMIT state
that is used to emit the low quality end of an EST. The match states, one for each
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Fig. 1. The structure of the HMM mixture. The model is constrained by sharing pa-
rameters. The shaded box is the basic block of the sub-HMM and is repeated length-2
times. It is identical in all sub-HMMs; all other parameters are shared except the
emission distribution of the match state which varies between blocks, according to the
HERV sequence each sub-HMM corresponds to. EEMIT-state emits the low-quality end
part. The plates illustrate that the same model is learned separately for each tissue.

position of the HERV sequence, can either emit the nucleotide in that position
of the HERV sequence (with probability pt) or one of the other nucleotides (with
probabilities (1−pt)/3). The parameter pt is shared between all match states in the
mixture model. The EEMIT states and all the insert states share parameters: they
emit nucleotides using the same distribution. The transition parameters are also
shared throughout the mixture (see Fig. 1). In summary, the component HMM
generates data that roughly matches a subsequence of the source HERV, but with
mismatches, insertions, deletions, and a low-quality end part.

The mixture model corresponds to one large HMM where the first transition
chooses one of the N HERV-specific sub-HMMs (see Fig. 1). The Baum-Welch
algorithm is used to learn the whole mixture. The learned probabilities of the
first transition (the mixture weights) are estimates of the HERV activities. We
use heuristics to reduce HMM training time to reasonable limits [11].

The hidden Markov mixture model can be extended to estimation of expres-
sion profiles. We can simply learn a separate model for each tissue and then
combine the results meaningfully. In practice, we need to collect several sets of
EST sequences, one set for each tissue. Then we learn the model for each EST
set. This results in the relative activity distributions of the HERVs for each
tissue.

The relative activity distributions of HERVs from different tissues can be
combined in two ways to form the HERV expression profiles. 1) The relative
activities of a HERV in different tissues are used directly as the expression profile.
In this setting it is assumed that each EST set, irrespective of its size, is a sample
of all HERV derived mRNAs in the tissue. 2) The relative activities of a HERV in
different tissues are first scaled according to the number of ESTs available from
the tissues. This way the expression profile of a HERV is more clearly related to
the number ESTs available from the HERV and the activity value of the HERV
can be seen as a probabilistic EST count. In this setting it is assumed that the
size of the EST set is relevant. In this work we will use this second approach.
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3 Data

We study the expression profiles of HERVs of the HML2 group. This HERV
group is the youngest one and thus has the largest proportion of relatively intact
elements. It contains sixty members, some of which are full-length, i.e. have
retained the typical retrovirus structure LTR-gag-pro-pol-env-LTR. A few of
these elements even have open reading frames for the env gene, i.e. they could
produce retroviral env proteins.

The HML2 group is the most difficult one to study because the sequences
within the young HML2 group are more similar to each other than sequences
in other groups. It is impossible to match ESTs to individual HML2 HERVs
unambiguously. Our statistical approach is able to alleviate this problem to some
extent. But, even with our method, the activities of nearly identical HERVs will
be correlated.

We studied the expression of HML2 HERVs in five tissue types: brain, lung,
breast, placenta and male reproductive tissues (RT). This selection was mainly
due to the availability of the ESTs, but some of these tissues are also interesting
per se: HERV transcripts have been detected in brain related diseases, HERVs
active in reproductive tissues could produce new HERV integrations and some
HERVs are known to have beneficial functions in placenta. In addition, we know
from earlier studies that HERV-K elements are active at least in testis and brain
tissues [9].

The HERVs were automatically detected from the human genome by the
program RetroTector1. Sixty of the HERVs were similar to HML2 reference
sequence and were included into the HML2 HERV set.

ESTs matching the HML2 HERVs were searched from the dbEST database
[20] with BLAST [1]. The ESTs were divided into tissue-specific sets using eVoc
Ontologies [19]. We used a match threshold of E-value 10−40 in BLAST.

In addition to HML2 HERVs, some elements from other HERV groups were
included in the HERV set. This was done to ensure reliable activity estimates
for the HML2 HERVs: If the extra HERVs would not be included, then EST
originating from them would be distributed over HML2 HERVs, falsely increas-
ing their activity estimates. In other words, adding the extra HERVs reduces
the error due to ESTs that match a non-HML2 HERV better than any of the
HML2 HERVs.

The set of extra HERVs was selected based on a heuristic BLAST activity.
The BLAST activity of a HERV is the number of EST matching that HERV
better than any other HERV. ESTs that match several HERVs equally well are
divided to all those HERVs. In our earlier work [11] BLAST activity was shown
to correlate with activity estimates from the HMM model. We included all highly
BLAST active HERVs (those with more than 2.5 ESTs) and then the most active

1 RetroTector is a program used for detecting retroviral sequences in genomes. It
searches for conserved retroviral motifs and then combines the motifs into chains
fulfilling distance constraints. It was developed by Jonas Blomberg and Göran
Sperber at Uppsala University [15].
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Table 1. Data set sizes for different tissues. “HERV-EST pairs” is the number of EST
to HERV matches returned by BLAST.

Tissue HERVs ESTs HERV-EST pairs

Brain 94 471 7076
Lung 86 279 4661
Placenta 85 219 2770
Breast 73 164 2987
Male reproductive tissue 89 249 4157

HERV (still required to have at least one EST match) from each HERV group
into the analysis. The set of extra HERVs was different for each tissue. Table 1
list the data sets sizes for all tissues.

4 Results

The method is able to estimate the relative activities of the HERVs. The activity
profiles for HML2 HERVs are shown in Fig. 2A. Many of the HERVs exhibit
tissue specific expression. There are also some HERVs that are active in all
tissues as well as HERVs that are not active in any of them. The activities of
most HML2 HERVs were previously unknown. A portion of the full-length HML2
HERVs have been studied before in [16] using a heuristic BLAST approach. Some
individual HERVs are analyzed more closely in Section 4.1.

The results show that adding the extra HERVs was necessary to get reliable
estimates for the HML2 HERVs. In each case the probability mass allotted to the
HML2 HERVs was less than half of the total (ranging from 37% in the placenta
to 48% in the lungs). If the extra HERVs would not have been included, then
the probability mass now belonging to them would have been distributed over
the HML2 HERVs, falsely increasing their activity estimates. Furthermore, some
of the non-HML2 HERVs were very active in comparison to the mean activity
level of the HML2 HERVs (see Fig. 2B). The high activity of the non-HML2
HERVs indicates that there is a lot of cross-talk between the HERV groups (the
ESTs retrieved using the HML2 sequences as queries also match HERVs from
the other groups). Some of the cross-talk might be due to portions of the HERVs
that resemble other types of retrotransposons (see section 4.1).

We estimated the reliability of the results with a bootstrap-like method. The
EST data was resampled with replacement 1000 times, and the activities were
reoptimized for each replicate while other parameters were kept fixed (see [11] for
more details). Fig. 3 shows the means and standard deviations of these replicates
for the HERV activities in the lung tissue. The behavior in the other tissues is
very similar. The standard deviations are small compared to the differences in
HERV activities and the means are very close to the activities learned from all
data. The standard deviations of the clearly active HERVs (probabilistic EST
count above 5) and almost inactive HERVs (probabilistic EST count below 1)
do not overlap. Thus we can trust the active-looking ones to be truly active.
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Fig. 2. The activities of the HML2 (panel A) and non-HML2 (panel B) HERVs. In
both panels the rows depict the HERV activity distributions in different tissues and
the columns the expression profiles of individual HERV sequences. Letters below the
columns are labels for the HERVs analyzed in Section 4.1. The activity values are shown
on a logarithmic scale, as can be seen from the legends on the right. The scale is the same
in both panels. The numbers next to the legend are the probabilistic EST counts for
each gray shade. The highest activity for a HML2 HERV is 24.8 (HERV F in the brain
tissue). The columns have been ordered according to a hierarchical clustering based on
the (unlogarithmic) Euclidean distances between the HERV expression profiles.
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Fig. 3. The activities (probabilistic EST counts) of the HML2 and non-HML2 HERVs
in the lung tissue. The crosses are the means and standard deviations from the boot-
strap resamples (see text for details) and the bars the activities learned from complete
data. The HERVs are in the same order as in Figs. 2A and 2B, but inactive HERVs
(with probabilistic EST count below 10−7) have been left out of the visualization to
save space. The letters below the columns are the labels for the HERVs analyzed in
Section 4.1.
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4.1 Closer Look on Individual Active HERVs

Here we take a closer look on some of the individual HERVs. These have been se-
lected as examples of the typical expression patterns of the active HERVs observed
in the data. The HERVs analyzed in this subsection are summarized in Table 2.
The labels used to denote the HERVs are letters with no special meaning.

HERV A is full-length element with an open reading frame for the env gene.
This HML2 HERV is known as HERV-K102. It is somewhat active in all tissues
— its highest activity is observed in the breast tissue. The activity is due to
ESTs that match the LTRs and the env gene area of the HERV. This HERV is
a potential retrovirally active HERV that could produce env protein. HERV A
is also mentioned in [16], but no exact details are given. UCSC Genome browser
shows a new hypothetical human protein overlapping the LTRs of this HERV.
This supports our finding that this HERV is retrovirally active.

HERV B is an almost full-length HERV with no open reading frames and a
missing end-LTR. The HERV is active in the brain, lung and male reproductive
tissues. Its activity is concentrated on gag and pol genes. This HERV has been
studied earlier in [16], where it was found to be expressed in the brain, placenta,
testis and prostate tissues. It had low activity in the lung and breast tissues.
These results agree with our observations except for placenta and lung, for which
our results are just the opposite.

HERV C is active only in the male reproductive tissues. The ESTs match this
full-length HERV near the end of pol and at the end-LTR. The ESTs might be
coming from the end of a pol gene transcript, however, ESTs from the beginning
of the transcript are not observed. UCSC Genome browser shows a short gene
sequence, annotated as a retroviral rec gene, between and partly overlapping the
sequence segments detected as active by our method. This further supports the
observation that this relatively intact HERV locus is active.

HERV D exhibits a clear tissue-specific expression: it is active only in the brain
tissues. This non-full-length HERV is active in the gag gene area. However, there is
no open reading frame for a gag protein. The observed expression does not resem-
ble that of a retrovirally active HERV [4]. Hence, it seems that this HERV might
have been used as a building block for something else than retroviral proteins.

The data set contains some HERVs that are very active in all studied tissues;
for example, the HERV sequence E. ESTs match this HERV in the end of the pol
gene and parts of env. However, when we look at this genome area at the UCSC
Genome Browser, the pol gene area is annotated there as an L1 repeat. Thus, it
may be that the (probabilistic) EST count of this HERV is actually measuring L1
derived ESTs. Similar situation applies to the highly active HERV F, where the ex-
pression also seems to be L1 derived. These HERVs are examples of broken down
sequences that are harder to detect automatically. For these HERVs the Retro-
Tector program may have misinterpreted some portion of the L1 structure, which
as a retrotransposon is similar to that of a retrovirus, as retrovirus-derived DNA.

HERV G measures expression of SVA elements that are composite retrotrans-
posons consisting of an Alu like portion, a tandem repeat portion and a portion
originating from the HML2 LTR sequence [12]. The end portion of the SVA
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Table 2. Details about the HERVs analyzed in Section 4.1. “Label” is the label of
the HERV used in the text and figures. “Chr”, “strand”, “start” and “end” tell the
chromosome, the strand, and the sequence start and end positions for the HERV, re-
spectively (in the July 2003 version (hg16) of the human genome). “Subgenes” describes
the structure and “group” the group of the HERV. The last column in the upper part
of the table gives the name used for the HERV in [16]. The “orf” columns describe how
intact the retrovirus protein reading frame is: 0 is intact, i.e. the HERV has a open
reading frame for the protein. “Age” is the estimated age of the element measured in
percentage of LTR unsimilarity. The two LTRs of a retrovirus are identical on integra-
tion and mutate afterwards. The “gene context” column gives the gene nearest to or
overlapping with the HERV locus.

label chr start end strand subgenes group name in [16]

A 1 152822428 152813249 - LTRgagpropolenvLTR HML2 K102
B 22 22203232 22213324 + LTRgagpropolenv HML2 22q11
C 11 101103511 101112976 + LTRgagpropolenvLTR HML2 11q22.1
D 7 140863179 140859365 - gagpropol HML2
E 16 35307416 35314276 + polenv HML2
F 1 75265364 75273509 + LTRgagpro HML2
G 19 21682582 21697392 + LTRLTR unknown

label gagorf proorf polorf envorf age gene context

A 3 0 1 0 0.21 3’ LTR the last exon of a hypothetical gene
B 1 5 12 9 - gene IGLL1 2.5 Kb away downs. (antisense)
C 3 0 1 1 0.41 part annotated as retroviral rec gene
D 8 1 16 - - gene SSBP1 1 Kb away downs. (antisense)
E - - 15 2 - nearest gene 20 Kb downstream (sense)
F 2 0 - - - HERV in a long intron of an antisense gene
G - - - - 10.59 gene ZNF100 100b downstream (antisense)

repeat is about 95% similar to the HML2 LTR. For this reason, some of the
ESTs retrieved using BLAST may actually come from a SVA element. As a con-
sequence, it is necessary to include a SVA like sequence into the HERV set so
that possible SVA derived ESTs will not confuse the activity estimates of LTR-
containing HML2 HERVs. The SVA-ESTs will match the SVA like “HERV”
better and thus have low probability on matches to HERVs. It turns out that
one sequence in the HERV collection (marked with G in the figures) obtained
by RetroTector is very similar to a SVA element and actually portions of this
sequence are annotated as SVA in the UCSC Genome Browser. It was included
into the HERV set to serve as the SVA like element. The results show that this
“HERV” is very active in all tissues and the activity is in the SVA repeat areas.
This indicates SVA activity in all the analyzed tissues.

5 Discussion and Conclusions

We have used a generative model-based method to estimate the expression pro-
files of individual HERVs rather than those of HERV groups. Such detailed
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analysis is vital for understanding the functions and control mechanisms of
HERVs. Our method allows the exploration of expression patterns within a
HERV group and will reveal interesting potentially active HERVs. These can
then be studied further and their activity levels in different tissues can be ver-
ified with laboratory methods. By contrast, exhaustive search of active HERVs
in the laboratory would be too expensive and/or difficult.

The advantage of our method over a simple “find the best matching HERV for
each EST” approach (such as the BLAST activity method described in section
3) is the ability to take uncertainties into account. Our model is able to learn the
underlying activities from data where the error rate (noise) in the ESTs is larger
than differences between two HML2 HERV sequences. In our earlier work [11] we
showed with experiments on simulated data that the HMM model outperforms
the simple BLAST activity estimation method. The difference was most notable
in the case of HML2 HERVs.

The number of ESTs available from each tissue was not as high as we would
have hoped: The EST sets were small with only about three ESTs per HERV.
As a result, the activity estimates are not as accurate as they would have been
with a larger data set. Still, our results were reliable according to bootstrap
resampling and as such can give valuable pointers to HERVs that should be
studied more closely.

There are few examples of active and potentially protein-coding HERVs. Most
of the active HERVs (such as HERVs B and D discussed in section 4.1) display
fragmented expression that could be explained by RNA mediated activity or by
function as exons, beginings or ends of nearby human genes.

Some of the observed expression may be due to active non-retroviral repeat
sequences. In this study we wanted to study fragmented HERVs in addition
to the full-length elements. The fragmented HERVs are harder to detect and
in the process of ensuring that the more mutated HERVs are not missed some
elements that are combinations of retrovirus and retrotransposon sequences may
be included into the RetroTector produced HERV set. Actually, some of the most
active HERVs were found to contain sequence portions which the RepeatMasker2

[14] had annotated as L1, L2 or SVA repeats. The fact that we observe expression
similar to L1 or SVA elements is interesting as these elements have been shown
to be active recently: The comparison of human chimpanzee genomes revealed
thousands of species specific integrations for both L1 and SVA elements [18].
Our results indicate both L1 and SVA elements are still actively expressed in
the human genome.

The hidden Markov mixture model can also be applied to other kinds of
mRNA data sources or to other types of repetitive elements. For example our
method could be used as a post-processing step in a RT-PCR reaction [9] where

2 RepeatMasker is a widely used program for detecting repeats. It relies on a database,
the RepBase [5], of consensus sequences for various kinds or repeats. The repeat
annotations in the UCSC Genome Browser come from RepeatMasker predictions. A
discussion on the differences between RetroTector and RepeatMasker can be found
from [15].
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a broadly targeting primer (all members of a HERV group are amplified) has
been used. When the PCR products are sequenced, they can be compared to the
members of the targeted HERV group using our hidden Markov mixture model.
This way it can be determined which elements within the group of very similar
sequences are active. This can be done in one or several tissues.
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Abstract. The inference of a network structure from microarray data providing 
dynamical information about the underlying Gene regulatory network is an 
important and still outstanding problem. Recently, a causal modeling approach 
was presented in our publications to recover the structure of this network. 
However, issues like spurious arcs and time delay were not dealt with 
previously. The graph-theoretical measure d-separation provides criteria to 
recover the network structure edge-by-edge by calculating the partial 
correlation. However, the estimation of partial correlations from small sample 
sizes is a practical problem. As our approach attempts to find networks that 
closely match the observed partial correlation constraints in the data, main aim 
to this paper is to attempt to maximize the scoring metric used. In this paper, we 
formulate a framework for path analysis as a post processing step after learning 
gene regulatory network using causal modeling. The approach is tested with 
both artificial and real gene regulatory network scenario and the structure 
recovered after post processing better fits the data.  

Keywords: Causal model, d-separation, conditional independence. 

1   Introduction 

Simultaneous monitoring of genome wide expression (microarray technology) allows 
us to gain insight into concerted activity of interacting genes well-known as 
transcriptional gene regulatory network (GRN). The network of regulatory 
relationships is inferred by various computational approaches directly from the 
expression profiles. For example, Boolean network, Bayesian network, neural 
network and genetic algorithm based approaches have been successfully applied to 
infer networks from expression profiles [1, 2, 3, 4]. Recently, we have developed 
linear causal model approach to infer gene networks [5, 6], which are based on 
graphical models [7, 8]. Linear causal models are closely related to Bayesian 
networks, which a number of researchers have used to model gene regulation [9, 10, 
11, 12]. In fact, a linear causal model is a special case of a Bayesian network (BN) 
that has linear Gaussian conditional densities at each node. Our method infers a 
simple network structure where the conditional independence between variables is 
estimated by the partial correlation coefficient, and corresponds to a graph based on 
the Markov properties. Network components are nodes, V that are genes in a GRN 
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and an edge set E representing the dependency structure of the nodes. Thus, the graph 
G = (V, E) the topology of the gene network. In our approach, we defined a set of 
scoring functions that can be used to measure the quality of this network G. These 
include fitness of the Markov Blanket (MB) of every node, fitness of the links 
between nodes that indicate the direction of influence and the + or - indicate positive 
or negative influence of the nodes. A search algorithm that can help us to find the best 
score network structure needed. Since the number of BNs is super-exponential in the 
number of nodes available and an exhaustive comparison of all the structures is 
impossible. So we implemented a GA which uses local search of Markov Blankets in 
BN structure space, moving from one BN to the next one by performing simple 
graphical modifications such as addition and deletion of edges during crossover and 
mutation. As score-based approach might suffer the local minima a guided genetic 
algorithm was proposed. 

The goal is to obtain a network that is minimal in the number of links, or 
representation size, necessary to fit the data. However, the search algorithm is only 
able to guarantee the quality of the returned structure to a certain extent because there 
exist multiple BN’s representing the same dataset due to the nature of the problem 
being NP-Hard. Not only in the final returned network, but also in intermediate stage 
networks of the discovery process using genetic algorithm, there exist many 
equivalent possibilities of combination of edges having the same fitness posing 
difficulty is making a choice for drawing causal conclusions. It is general statistical 
knowledge that extra care should be taken when drawing causal conclusions from 
statistical analysis. This is in particular valid for Causal Bayesian networks. A 
“wrong” choice at an intermediate stage and final stage may prevent from finding a 
minimal network for the data. 

Theoretically, given a faithful Bayesian network structure of the training data set, 
those features that are identified by the Markov blanket indeed block all the influence 
of the other features. The selection of Markov blanket is based on the d-separation 
rule of the Bayesian network. When given a specific attribute, which is node in the 
Bayesian network, Markov blanket for the attribute is the set of nodes composed of 
the attribute's parents, its children, and its children's parents. Direct-dependent 
separation or d-separation is a graphical procedure that establishes the conditional 
statistical independence of certain sets of these random variables, i.e. if the set of  
nodes X is independent of nodes Y, then there exist nodes Z such that they separate 
the X’s and Y’s.  Further, there exist multiple paths (a path is a series of variables 
connected by line segments) between two nodes in a directed graph representing 
causal flows. Directed graphs provide the visual representation of that flow; the set of 
independence or conditional independence conditions which are implied by that graph 
are not (necessarily) obvious. Here, we are interested in analysis of independence and 
conditional independence of variables under alternative causal flows between 
variables in order to obtain a minimal network. Since time delay is an important 
characteristic of gene networks, delay propagation should also taken into account 
while analyzing these alternative causal flows (path delay analysis). 

We propose a path analysis framework algorithm exploiting d-separation and time 
delay to enhance the quality of the discovered network. More precisely, it is divided 
into four distinct phases. In the first one, we use a method to find alternative causal 
flows. As the final network is made of Markov blanket of individual nodes, we obtain 
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upward causal flows from parents, downward causal flows through children and 
sideward causal flows through the spouses. A set of conditional independence is 
obtained from these paths. Phase 2 analyses the various paths obtained at the end of 
phase 1 for their consistency in terms of conformance with d-separation property, 
conflicting alternative explanations of causality and path delay propagation. These are 
explained in detail in section 3. During the process of analysis, the edges that are non-
conforming to the constraints are marked for deletion. Then, in a third phase, this BN 
is refined into one that better fits data by making choice of either deleting an edge that 
is marked for deletion or not. This last phase tests and verifies the final network and if 
the test fails phase 3 is performed again till a better network is obtained. Preliminary 
experimental results using small artificial network suggest that our algorithm 
produces better quality network than the one obtained at the end of GA search. The 
rest of the paper is organized as follows. Section 2 provides some background on 
causal model and d-separation. Then, Section 3 describes the methodology. Section 4 
shows results from artificial network and S. cerevisiae yeast network [13]. Finally, 
Section 5 provides conclusion and mentions future work. 

2   Background 

To introduce our approach, in this section we briefly review the concept of d-separation 
which plays an important role in our algorithm.  

2.1   Causal Model for GRN 

The inference of causal network structures is an important and challenging problem. 
A causal structure can be represented by a directed graph whose nodes represent the 
variables of the system and edges between nodes indicate a causal relationship along 
the direction of the edge. Important contributions in this problem were made by Pearl 
et al, and Sprites et al [7, 8] who suggested algorithms to infer a causal structure from 
experimental data by using partial correlations if the underlying causal structure is a 
directed, acyclic graph (DAG). A central step in determining the likelihood of the data 
given the whole network is decomposed into set of score of local models that includes 
fitness of structure, direction of causality and sign (positive/ negative) of regulation. 
The task of network reconstruction is cast into a search for candidate gene networks 
whose scores are high. To implement a heuristic search method, we apply a genetic 
algorithm (GA), whereby creating and evolving different networks to eventually 
obtain a network that best fits the microarray data. Due to the stochastic nature of the 
GA, the GA is repeated and the resulting network structures are combined to 
reconstruct the final gene network. While evaluating the fitness, the putative network 
is actually decomposed into Markov Blankets (MB) and conditional independence 
tests are applied in order to detect whether or not connections are direct or indirect. 
The direction and sign of regulation are recovered by estimating the time delay and 
correlation between expression profiles of pairs of genes. Further, this methodology is 
applied to a toy dataset generated in the same fashion as discussed in our previous 
work [6] and Saccharomyces cerevisiae (yeast) [13] microarray dataset and the results 
are promising and agreeing with known biological findings. 



 A Framework for Path Analysis in Gene Regulatory Networks 267 

2.2   D-Separation 

D-Separation is defined as: Two nodes X and Y in a directed acyclic graph are d-
separated if every path between them is blocked. Consider 3 disjoint sets of variables 
X, Y, and Z, represented as nodes on a DAG.  Definition:  A path is a sequence of 
consecutive edges (of any directionality) in the graph.  A path is said to be d-
separated, or blocked, by a set of variables Z iff the path (a) contains a chain (b) or a 
fork (c) contains an inverted fork, or collider, such that the middle variable m is not in 
Z and such that no descendant of m is in Z. (Fig. 1) 

A set Z is said to d-separate X from Y iff Z blocks every path from a variable in X 
to a variable in Y. 
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Fig. 1.     Fig. 2. 

The no descendant example: (Fig. 1 (d)) 

If d is in Z, then the path from i to j is unblocked even if m is not in Z.   
Based on this definition of d-separation, the useful theorem can be stated as 

follows. 

Theorem: If X and Y are d-separated by Z in a DAG, then X ╨ Y | Z.  Conversely, if 
X and Y are not d-separated by Z in the DAG, then X and Y are dependent 
conditional on Z.   

To help understanding this theorem, four basic graphical structures (Fig.2) and the 
independences implied by each.   

1) X2 is an intermediate variable.  The only independence implied by this structure 
is X1 ╨ X3 | X2.  It is NOT true that X1 ╨ X3.   

2) X2 is a common cause.  The only independence implied by this structure is X1 ╨ 
X3 | X2.  It is NOT true that X1 ╨ X3.   

3) X2 is a common effect.  The only independence implied by this structure is X1 ╨ 
X3.  It is NOT true that X1 ╨ X3 | X2.   

4)  X2 is a common effect.  X4 is an effect of a common effect.  The independences 
implied by this structure are X1 ╨ X3 , X4 ╨ X1| X2, and X4 ╨ X3 | X2.  It is NOT true 
that X1 ╨ X3| X2 or that X1 ╨ X3 | X4.  This is the trickiest structure you will find.   

2.3   Paths in a Markov Blanket 

Path is a sequence of distinct vertices, successive vertices are adjacent. We view a 
gene network as a network system of information channels, where each node is a 
valve that is either active or inactive and the valves are connected by noisy 
information channels. The information flow can pass through an active valve but not 
an inactive one. When all the valves (nodes) on one undirected path between two 
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nodes are active, we say this path is open. If any one valve in the path is inactive, we 
say the path is closed. When all paths between two nodes are closed given the status 
of a set of valves (nodes), we say the two nodes are d-separated by the set of nodes. 
The status of valves can be changed through the instantiation of a set of nodes. The 
amount of information flow between two nodes can be measured by using mutual 
information, when no nodes are instantiated, or conditional mutual information, when 
some other nodes are instantiated. 

The two limitations of path analysis algorithms using exclusively partial 
correlation and d-separation to infer the structure of the underlying graph are: first, for 
large graphs the search for a set of d-separating paths between two nodes X and Y can 
be hard, because of the combinatorial explosion of possible sets. Second, the partial 
correlation does not necessarily vanish for variables not directly connected in the true 
model. We propose to solve these limitations using our approach. 

Since our model [6] works by finding Markov blankets of the main network, one 
approach to search set of d-separating paths is by separating them as upward, 
downward and sideway paths (Fig. 3). The upward path (red arrows) is the blocking 
path to a node from the parents, the downward path (green arrows) is the open path 
from the node through its children and sideway path (blue arrows) is the path between 
the node and its spouse node. 

 

Fig. 3. Paths in Markov Blanket 

The explicit goal of the proposed post processing procedure is the inference from a 
set of causal paths got from the network obtained from the learning algorithm used. 
The approach is explained in the next section.  

3   The Algorithm for Path Analysis Framework  

In this section, we propose path analysis approach for incorporating missing d-
separation, multiple paths, alternative causal explanation, and effect of path time 
delay. The d-separation path analysis algorithm is extended to handle signal transition 
time delays, and to propagate their effects in the circuit using the ‘If..then’ time 

Downward 
Upward 

Sideways 
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functions. This algorithm has four phases: searching, marking for arc deletion, 
thinning (actual deletion) and finalizing the network. In the first phase, this algorithm 
finds the sets of paths for each node using its Markov blanket. In phase 2, each of the 
paths is analyzed for missing d-separation and d-separation for compliance with 
important property. This is done using the functions described below. Following that, 
each of the paths are analyzed for variance conformances and the arc that are non 
conforming are marked for deletion. The result of Phase 2 is a list of arcs marked to 
be deleted under various conditions. The Phase 3 performs the actual deletion of the 
arcs those actually affect the fitness of the network. The result of Phase 3 is the final 
network and phase 4 finalizes the network and if any mistakes identified the network 
is rolled back and sent back to Phase 3.  

3.1   The d-Separation Algorithm 

The selection of Markov blanket is based on the d-separation rule of the Bayesian 
network. When given a specific node in the Bayesian network, Markov blanket for the 
attribute is the set of nodes composed of the attribute's parents, its children, and its 
children's parents. Theoretically, given a Bayesian network structure of the training 
data set, those nodes that are identified by the Markov blanket indeed block all the 
influence of the other nodes in the network. This helps to identify the d-sep condition 
set. The problem is to obtain a network that has minimal in the number of links, or 
representation size, necessary to fit the data. The properties of Markov blanket and d-
separation are combined for this reason. 

Concept of missing D-Separation: D-separation property in a DAG implies 
conditional statistical independence, and missing d-separation implies missing 
conditional independence D-Connection: X and Y are d-connected if and only if 
either (1) there is a causal path between them or (2) there is evidence that renders the 
two nodes correlated with each other. 

Missing D-Separation  
Let G be a complete network (path diagram) 

1. Initialize counter k=0 indicating the maximum number of nodes in the 
steps below.  

2. For each pair of nodes X,Y, connected in G by an egde and possessing 
more than k neighbors in Markov blanket each, check if for any subset of 
neighbors of X with cardinality (size) exactly k, the variables X,Y are 
conditionally independent.  If so, mark the arc (X,Y) for DELETION from  
G. 

3. k=k+1. if more than k neighbors each, go to step 2. Otherwise go to step 4.  
4. Repeat for 3 variables X,Y,Z paths, where the end nodes of the path 

(unconnected edges) are checked for D-separation with their respective 
neighbors 

5. Repeat for each four variables X,Y,Z,T  

Similarly, missing D-Connection algorithm is formulated. 
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3.2   The Framework Algorithm 

Phase 1: Search 
Start with a fully connected graph G from the output.  

1. Search for paths of the format (x, Z, y) for each pair (x, y) ∈ G from node’s 
Markov blanket.  
2. From the search enlist the d-separation rules (condition set) identified in G which 
is to be tested.  
3. Prepare arcs list 

Phase 2: Conformance / Compliance 
Check for the following conformances and mark edges for deletion. 

Belief 1: Perform d-separation testing on the condition set. Also perform 
following two algorithms to obtain arcs that are marked for deletion at later stage. 

1. Missing D-separation algorithm 
2. Missing D-connection algorithm 
Given Model1 constraints and actual model in network, mark belief1 as PASS 

OR FAIL 
Belief 2: Alternative paths hypothesis is tested here which includes 

corresponding constraints 
Given Model2 constraints and actual model in real network, mark Belief2 as 

PASS or FAIL. Mark edges for deletion on the contradictory paths. 
Belief 3: 
Alternative explanation hypothesis is tested. Here the constraints are again 

brought upto 4 node paths. And Belief 3 PASS or FAIL is decided. 
Belief 4:  
Paths are converted to IF THEN statements and constraints are laid down. We 

confine our discussion to 4 node path delay analysis. Short path analysis is a 
straightforward adaptation which, for the most part, is limited to finding max and 
min delays. If the constraints match the real network the model is PASS otherwise 
FAIL. The non conforming edges are marked for deletion. 

Phase 3: Thinning (Edge DELETION phase) 
To try to avoid contradicting deletions 

While there are edges marked for DELETION, do 
1. Does the edge satisfy the following criteria: 

(a) Island property 
(b) Sink property 
(c) Acyclic property 

2. If Model 1 and Model 3 are PASS and the edge for deletion by both models 
then permanently DELETE the arc and so on. (similar rules are applied) 

Phase 4: Finalizing Network 
Check the final DAG 

1. Test that Markov blanket of every node (parents and children) 
2. Test directionality and delay 
3. If both tests are successful return G 
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4   Experiments and Results 

We have carried out experimental evaluation of this framework algorithm. Due to the 
intractability to test all candidate sets that could d-separate two given nodes discussed 
earlier, we could not test all possibilities, but have to restrict the complexity of the 
analysis. Further, it has been suggested by de la Fuente et al [9] to calculation the 
partial correlation only up to order n whose value is practically one or two. In our path 
analysis, we considered controlling over 4 variables whereas d-separation can be 
applied when multiple variables are controlled (observed). For our studies, we use a 
graph called random artificial network generated by connecting possible pairs of 
nodes having only a few connections per node that approximately matches the 
observed partial correlation constraints in the artificial data. The method used to 
generate this data is borrowed from our previous work [6]. 

The result is shown in Fig.4. Fig.4 (a) is the actual network and Fig.4 (b) is the 
network obtained after post processing step carried out. It is clear that even under 
ideal experimental conditions the networks structure can not be inferred perfectly if a 
method is applied solely based on partial correlations because with at least 30% or 
more of the network was found wrong.  

(a) (b) 
 

Fig. 4. (a) and (b) Results from using artificial data and Network 

Fig.5 is the section of the actual yeast network [6, 13] structure and the network 
after post processing step is carried out where the thick dark lines indicate the barrier 
and arcs cutting through the barrier were deleted after post processing step. When the 
fitness measure was re-computed after post processing was carried out, nearly 20% 
accuracy improvement was noticed in result. This shows that the algorithm delivers 
more plausible networks close to the actual network.  
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Fig. 5. Results from using Real dataset and network 

5   Conclusion 

We developed a heuristic approach used to reconstruct gene networks from low-order 
partial correlations and a GA. In this paper we devised a post processing step for path 
analysis to improve the accuracy of the inferred network. The framework approach 
incorporates d-separation, alternative causal hypothesis and time delay as tools. The 
framework is tested with subsets of the artificial and real yeast networks and has 
shown overall precision of the inferable network structure improved by upto 20%. 
Further studies are necessary to demonstrate that these results hold also for different 
network scenarios, and also whose structure is more close to the structure of 
biological gene networks. This approach is slightly away from normal methods; as it 
involves delay analysis and d-separation. Although the method is attractive, for 
undesirable or impossible cases, such as a situations were time delay is irrelevant, the 
corresponding beliefs can be turned off in phase 2 of the framework algorithm. 
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Abstract. Microarray gene expression data is used to model differential activity 
in Gene Regulatory Networks (GRN) to elucidate complex cellular processes, 
though network modeling is susceptible to errors due to both noisy nature of 
gene expression data and platform bias. This intuitively provided the motivation 
for the development of an innovative technique, which effectively integrates 
GRN using cross-platform data to minimize the two aforementioned effects. 
This paper presents a GRN integration (GeNi) framework that fuses cross-
platform GRN to remove platform and experimental bias using the Dempster 
Shafer Theory of Evidence. The proposed model estimates gene co-regulation 
strength by using mutual information and removes spurious co-regulations 
through data processing inequality. The method automatically adapts to the data 
distribution using Belief theory, which does not require a preset threshold to ac-
cept co-regulated links. 1GeNi is applied to identify common cancer-related 
regulatory links in ten different datasets generated by different microarray plat-
forms including cDNA and Affymetrix arrays. Experimental results demonstrate 
that GeNi can be effectively applied for GRN reconstruction and cross-platform 
gene network fusion for any gene expression data. 

1   Introduction 

Gene expression analysis has been widely used for different biological studies. Sev-
eral statistical and computational intelligence modeling methods have been applied 
for this purpose. While these techniques provide biologists with valuable insights of 
                                                           
1 GeNi Software and Supplementary Material can be downloaded from www.gscit.monash.edu.au/ 

~shoaib or can be requested by emailing at {Shoaib.Sehgal AT gmail.com}. 
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different biological processes, most analyses are based on over/under expressed genes 
studies despite the fact that differential expression analysis do not fully harness the  
potential of microarray gene expression data because genes are treated independently 
and interactions between them are overlooked [1]. 

Gene Regulatory Networks (GRN) model how genes regulate different metabolism 
and can map the casual pathways. GRN reconstruction is however error prone due to 
the noisy nature of microarray data and microarray platform and experimental bias. 
One possible solution is to integrate networks constructed through different microar-
ray platforms, e.g. cDNA or Affymetrix high density oligonucleotide arrays, under 
either different or similar experimental conditions, though this is a challenging task 
because data generated by different platforms is not directly comparable. The objec-
tives include being able to construct models capable of inferring knowledge from 
thousands of genes at a time, assist in understanding complex genetic interactions and 
to integrate networks constructed from  heterogeneous microarray datasets [2, 3].  

Previous attempts to integrate cross platform GRN include Zhou et al. [3] who pro-
posed cross platform GRN fusion using second-order expression analysis  while Choi et 
al. [1] studied different types of cancer links using cross-platform analysis. In both 
studies the regulatory pathway was only considered if it was present in more than a 
certain number of experiments T, where the selection of this threshold T was empirically 
derived with no formal mathematical foundations so that selection of an incorrect T 
could inevitably lead to erroneous results. Furthermore, most GRN modeling techniques 
incur several limitations, including exponential time space complexity, unrealistic GRN 
assumptions such as acyclic network by bayesian networks, overfitting and under con-
strained regression analysis [4]. This has created a need for suitable techniques that are 
scaleable and do not impose unrealistic assumptions on the network structure.  

This paper proposes a novel Gene Regulatory Network Integration (GeNi) Frame-
work to model GRN. The proposed model integrates GRN generated from different 
platforms using Dempster Shafer Theory of Evidence (DSTE) [5]. The GeNi com-
putes gene to gene co-regulation using mutual information. Mutual Information is 
selected due to its proven improved performance compared to commonly used corre-
lation based methods and Bayesian Networks [4]. The other advantage of using mu-
tual information is that it does not enforce the acyclic assumption as posed by Bayes-
ian networks and is more scaleable than dynamic Bayesian networks, which remove 
this acyclic restriction. Mutual Information for GRN reconstruction has been used by 
Baso et al. [4] and Zhao et al. [6] though these methods can only be used for single 
data and doesn’t reconstruct network through cross platform network integration to 
remove bias and minimize the impact of noise. Also, GeNi has added advantage over 
other mutual information based techniques that it does not require threshold to select 
co-regulated links because it uses belief theory to accept/reject co-regulated links. 
After mutual information computation, GeNi then prunes the network using data 
processing inequality to remove the spurious co-regulations. Finally, the fusion of 
different gene networks is performed by using the belief theory. 

The proposed model is tested for its application to find tumor specific links in vari-
ous cancer datasets generated by different cDNA and Affemtrix microarray platforms. 
The results corroborate that GeNi can be effectively used to fuse cross-platform GRN.  
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The rest of the paper is organized as follows: Section 2 presents GeNi model in detail. 
Analysis of results is presented in Section 3 while conclusions are drawn in Section 4. 

2   Gene Regulatory Network Integration (GeNi) Model 

The complete GeNi framework is formalized in Fig. 1. Gene expression data is firstly 
preprocessed to remove noise and outliers followed by gene to gene mutual informa-
tion computation to measure gene co-regulation strength. The network is then pruned 
using data processing inequality, before network fusion is undertaken using DSTE. 
Each of these constituent blocks is now considered in the following sub-sections, with 
the rationale for the choice of each algorithm being delineated. 

2.1   Pre-processing 

The data is preprocessed to minimize the affect of noise on subsequent analysis. 
Negative values in Microarray data are considered as missing and genes with greater 
than 70% missing values and less than 4 observations are filtered out. Gene expres-
sion data is then re-parameterized using rank transformation to convert each gene into 
equally spaced expressions between the interval [0 1] [4] (Step1 - Fig. 1). Missing 
values in the data are then imputed by their gene averages. Finally, each clone was 
mapped to UniGene accession build # 162 to manage heterogeneous data.  

Pre Condition: Gene expression matrices YN and YT for normal and cancerous data. 

1. Preprocess (Section 2.1) 
2. Construct GRN using mutual information (Section 2.2). 
3. Remove spurious gene links using data processing inequality (Sec-

tion 2.3).  
4. Fuse cross platform networks using Dempster Shafer theory (Section 

2.4). 
5. Compare Normal and Cancerous fused networks to find out Con-

served, Broken and Tumor links (Section 2.5). 
6. Stop 

Post Condition: Gene Regulatory Networks Nn, Nt for normal and cancerous data. 

Fig. 1. GRN integration algorithm 

The pre-processing step is followed by GRN reconstruction for each data set (See 
Step2 - Fig. 1). Following sub-section explains this step in detail. 

2.2   GRN Reconstruction 

After pre-processing, GeNi computes pair wise mutual information for all genes 
to construct gene networks. The mutual information I(g1,g2), between two genes 
g1 and g2 is computed using Gaussian Kernel Estimator as: 
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where α1 and α2 are tunable parameter and computed by Monte Carlo Simulations 
[7] using bi-variate normal probability densities [4].  

Mutual information computation step is followed by network pruning using 
Data Processing Inequality which is explained in the next sub-section. 

2.3   Network Pruning 

When two genes g1 and g2 are interacting through a third gene G3 and I(G1,G2| G3) 
is zero then these genes are directly interacting with each other if: 

1 3 1 2 1 3 2 3I(g ,g ) I(g ,g ) and I(g ,g )  I(g ,g ).≤ ≤   (5) 

As this property is asymmetric it has the possibility of rejecting some of the 
loops or interactions between three genes whose information may not be fully 
modeled by pair wise mutual information. The introduction of a tolerance thresh-
old addresses this problem as well as provides the advantage of avoiding rejection 
of some of thetriangular links and loops [4].  

2.4   Cross Platform GRN Fusion 

GeNi fuses cross platform networks using DSTE (Step 4 - Fig. 1.) [5], as alluded to in 
Section 1. The theory extends Bayesian theory to evaluate beliefs from different evi-
dences. The DSTE allows beliefs to be represented by upper and lower probability 
intervals normally referred to as belief and plausibility respectively [5].   

The DSTE assumes that the information sources are independent of each other. 
This assumption makes it further feasible to use in GeNi as it first constructs GRN 
independent of each other using data generated by heterogeneous platforms under 
independent studies.  
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The application of this theory for cross platform GRN fusion requires a definition 
of the degree of belief (mass functions) to assign masses, normally referred to as 
probability value. The DSTE doesn’t mandate the method of computing these masses 
(probabilities) [8], which makes it a more generalized approach than Bayesian theory 
[9-11]. It adds flexibility to GeNi, as belief masses can be calculated using any GRN 
reconstruction method (Correlation, Probability value or Mutual Information) to com-
pute the gene co-regulation.  

For GRN fusion, the Ω = {R, NR} represents mutually exclusive event space for 
Co-Regulated (R) and Non Co-Regulated (NR) links, called frame of discernment or 

universe of discourse. The 2  = { , {R}, {NR}, {R, NR}} φΩ represents the set of all 

subsets of Ω, and classes in Ω are considered mutually exclusive. Let A be a non-zero 
degree of belief in 2Ω, called the focal element where: 

1
A

m( A )  and m( ) = 0φ
⊆Ω

=∑  (6) 

Focal elements and their masses construct an evidence structure, which can be ex-
pressed as: 

0{( A,m( A ))| A ,m( A ) }⊆ Ω >  (7) 

The value m(A) represents the weight of evidence in favor of complete set A. The 
belief function, which is a sum of masses of all subsets of hypothesis for R and NR, 
can be computed as: 

A R A NR

Bel( R ) m( R ) and Bel( NR ) m( NR )
⊆ ⊆

= =∑ ∑  (8) 

The same information can be computed by calculating plausibility or upper probabil-
ity value, which is the sum of the masses of all sets whose intersection with the hy-
pothesis is empty [12]. The plausibility of R can be defined as: 

A R A NR

Pl( R ) m( R ) and Pl( NR ) m( NR )
φ φ∩ = ∩ =

= =∑ ∑  (9) 

Similarly plausibility for  is  

0Pl( )φ =  (10) 

The relation between plausibility and belief masses can be expressed as: 

Bel( R ) Pl( R ) and Pl(R) = 1- Bel(R )≤  where R R= Ω − . 

The belief masses are the gene co-regulation probability or correlation values com-
puted in STEP 2 (Fig. 1). Figure 2 represents a schematic diagram for the fusion of 
belief masses where g1, g2, g3 and g4 are the genes sets. These genes are triggered by 
different regulation weights (P1, P2 …Pn) that represent belief masses m(R)) and 
m(NR) for co-regulated and not co-regulated weights respectively, in experiments {E1, 
E2 … En}. The combined belief Fk for the gene co-regulation is computed by: 
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where  represents the orthogonal sum and can be computed for n experiments as: 
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The combination can be normalized by introducing normalization factor Nb such that:  
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Fig. 2. A schematic diagram presenting fusion of belief masses in GeNi. The probabilities P1 … 
Pn are the co-regulation weights of g1 → g2 links computed from heterogeneous datasets. The 
Fk is the final co-regulation weight calculated using DSTE. The link is accepted or rejected 
based on the value of Fk. 
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The value of Nb was set to 0.5; however, GeNi doesn’t restrict the use of any nor-
malization value. The denominator in (11) normalizes the output to the safer belief 
function and serves to distribute any mass associated with  intersections of beliefs to 
the non empty intersections [13]. The genes co-regulation link is added to the fused 
network if the combined belief of R is higher than NR where Fk represents the link 
weight.  

After the integrated network is constructed, the network is pruned to remove the 
platform bias and the links that occur by chance. Only those regulatory links that are 
present in more than En experiments where En > n/4 and En > 8 [3] are added to the 
final fused network. It should be noted, however, that network pruning is an optional 
step in GeNi and this step is different from threshold-based integration based meth-
ods, as they don’t consider the link co-regulation weight-age while selecting the links 
for the final integration, as mentioned earlier, GeNi adds/removes links, primarily 
based on belief masses m(R) and m(NR). 

2.5   Network Comparison 

Once the fused networks have been constructed they are compared for Broken, Con-
served and Tumor links (See Step 5 - Fig. 1). The precise definition for each of these 
links is now given:  

Definition 1. A link is a Conserved Link if it is present in both normal and tumor 
networks. 

Definition 2. A link is a Broken Link if it is present in normal network and is missing 
in tumor network. 

Definition 3. A link is a Tumor Link if it is not present in normal network but exists in 
tumor networks. 

The next section provides analysis of GRN constructed using GeNi. 

3   Analysis of Results and Discussion 

For cross platform GRN fusion, 10 different datasets under 11 different experimental 
conditions (Table 1), designed for the comparison of primary cancer and non cancer 
counterpart, were used. These datasets were generated using different microarray 
platforms including cDNA and Affmetrix GeneChip. The datasets were collected 
from breast, pancreas, colon, brain, bladder, ovary, uterus, kidney, liver, lung, lym-
phoma, stomach and prostate tissues and had 5603, 17660, 3697, 3732, 5575, 13171, 
12065, 5983, 4615, 24822, 6593 genes respectively (Table 1). The total number of 
genes in all experiments were 103,516 (Choi et al. [1] for further details). To con-
struct the fused network, we selected 61 commonly present, regulated genes from the 
above datasets. The gene networks were first individually constructed using (Steps  
1-3 - Fig. 1) and then these network were integrated using belief theory to form fused  
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Table 1. Datasets 

Tissues Platforms Normal 
Samples 

Tumor 
Samples 

Breast [14] cDNA 13 13(72) 
Colon [15] Hu6800 22 22 
Kidney [16] cDNA 81 81 
Liver [17] cDNA 76 76(104) 
Lung [18] U95A 17 17(127) 

Lymphoma [19] cDNA 31 31(77) 
Pancreas [20] cDNA 14 22 
Prostate [21] U95A 50 52 
Stomach [22] cDNA 29 29(103) 

Brain,  
Bladder,  
Ovary  

Uterus [23] 

Hu6800   
Hu35KSubA 
Hu35KSubA 
Hu35KSubA 

8 
7 
3 
6 

20 
11 
11 
10 

networks for both normal and tumor data (Figs. 3-5). These fused normal and tumor 
networks were then compared to search for Broken, Conserved and Tumor links. 

Table 2 shows selected Broken, Conserved and Tumor links. The results demon-
strate that 52% of the links were broken links in tumor tissue samples which were 
present in normal tissues while only 2% links were newly created in tumor cells com-
pared to normal tissues. Only 45% of the links were conserved between normal and 
tumor tissues. These links can be used to monitor patient’s response to certain treat-
ment. For instance, if the response of patient to the treatment is positive then the num-
ber of conserved links should increase while concomitantly decreasing the broken and 
tumor links. 

Figure 3 plots a selected section of normal and tumor networks for comparison 
where complete normal and tumor networks for commonly selected genes are 
shown in Figs. 4 and 5 (Individual networks can be downloaded from 
www.gscit.monash. edu.au/~shoaib/GeNi.html). It is evident from Figs. 3-4 that 
normal data has high percentage of connected nodes compared to tumor network. 
Figure 3 shows several inserting observations for instance, a link from nuclear 
factor of activated T-cells, cytoplasmic, calcineurin-dependent 3 (HS.172674) to 
protein phosphatase 2 (formerly 2A), regulatory subunit A (PR 65), beta isoform 
(HS.431156) is present in normal network but is broken in the tumor network. A 
new link is created between protein phosphatase 2 (formerly 2A), regulatory sub-
unit A (PR 65), beta isoform (HS.431156) and Sulfotransferase family, cytosolic, 
1A, phenol-preferring, member (HS.368950) in tumor network, which was not pre-
sent in the normal network. Figure 3 also shows the conserved link between nuclear 
factor of activated T-cells, cytoplasmic, calcineurin-dependent 3 (HS.172674) and 
Sulfotransferase family, cytosolic, 1A, phenol-preferring, member 1 (HS.368950), 
which is present in both datasets. 
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Fig. 3. Cross-section of normal and tumor tissue networks 

 

Fig. 4. Complete fused network of normal tissues 
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Fig. 5. Complete fused network of tumor tissues 

Table 2. Number of genes involved in GRN links 

GRN Links Broken Links Conserved Links Tumor Links 
% Links 52% 45% 2% 

These results above all demonstrate that GeNi can indeed be used for cross-
platform network fusion however; further wet laboratory results are required in order 
to completely verify the model. 

4   Conclusions 

The paper has presented GRN integration (GeNi) framework to fuse cross-platform 
GRN in order to remove platform and experimental bias. The proposed model esti-
mates gene co-regulation strength by using mutual information and removes spurious 
co-regulations by using data processing inequality. The method automatically adapts 
to the data distribution using Belief theory and hence does not require preset threshold 
to accept the co-regulated links which makes method more robust for GRN recon-
struction. The GeNi was used to find common cancer related regulatory links in ten 
different datasets generated by different microarray platforms including cDNA and 
Affymetrix arrays. The experimental results demonstrated that GeNi can be applied 
successfully for GRN reconstruction and cross-platform gene network fusion for 
various types of genetic data. 
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Abstract. The exponential increase in publication rate of new articles is 
limiting access of researchers to relevant literature. This has prompted the use 
of text mining tools to extract key biological information. Previous studies have 
reported extensive modification of existing generic text processors to process 
biological text. However, this requirement for modification had not been 
examined. In this study, we have constructed Muscorian, using MontyLingua, a 
generic text processor. It uses a two-layered generalization-specialization 
paradigm previously proposed where text was generically processed to a 
suitable intermediate format before domain-specific data extraction techniques 
are applied at the specialization layer. Evaluation using a corpus and experts 
indicated 86-90% precision and approximately 30% recall in extracting protein-
protein interactions, which was comparable to previous studies using either 
specialized biological text processing tools or modified existing tools. Our 
study had also demonstrated the flexibility of the two-layered generalization-
specialization paradigm by using the same generalization layer for two 
specialized information extraction tasks. 

Keywords: biomedical literature analysis, protein-protein interaction, monty 
lingua. 

1   Introduction 

PubMed currently indexes more than 16 million papers with about one million papers 
and 1.2 million added in the years 2005 and 2006 respectively. A simple keyword 
search in PubMed showed that nearly 900 thousand papers on mouse and more than 
1.3 million papers on rat research had been indexed in PubMed to date, and in the last 
four years, more than 150 thousand papers have been published on each of mouse and 
rat research. This trend of increased volume of research papers indexed in PubMed 
over the last 10 years makes it difficult for researchers to maintain an active and 
productive assessment of relevant literature. Information extraction (IE) has been used 
as a tool to analyze biological text to derive assertions on specific biological domains 
[30], such as protein phosphorylation [19] or entity interactions [1]. 
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A number of IE tools used for mining information from biological text can be 
classified according to their capacity for general application or tools that considers 
biological text as specialized text requiring domain-specific tools to process them. 
This has led to the development of specialized part-of-speech (POS) tag sets (such as 
SPECIALIST [28]), POS taggers (such as MedPost [33]), ontologies [11], text 
processors (such as MedLEE [15]), and full IE systems, such as GENIES [16], 
MedScan [29], MeKE [4], Arizona Relation Parser [10], and GIS [5]. On the other 
hand, an alternative approach assumes that biological text are not specialized enough 
to warrant re-development of tools but adaptation of existing or generic tools will 
suffice. To this end, BioRAT [12] had modified GATE [8], MedTAKMI [36] had 
modified TAKMI [27], originally used in call centres, Santos [31] had used Link 
grammar parser [32]. 

Although both systems demonstrated similar performance, either developing these 
systems or modifying existing systems were time consuming [20]. Although work by 
Grover [17] suggested that native generic tools may be used for biological text, a 
recent review had highlighted successful uses of a generic text processing system, 
MontyLingua [14, 23], for a number of purposes [22]. For example, MontyLingua has 
been used to process published economics papers for concept extraction [35]. The 
need to modify generic text processors had not been formally examined and the 
question of whether an un-modified, generic text processor can be used in biological 
text analysis with comparable performance, remains to be assessed. 

In this study, we evaluated a native, generic text processing system, MontyLingua 
[23], in a two-layered generalization-specialization architecture [29] where the 
generalization layer processes biological text into an intermediate knowledge 
representation for the specialization layer to extract genic or entity-entity interactions. 
This system demonstrated 86.1% precision using Learning Logic in Languages 2005 
evaluation data [9], 88.1% and 90.7% precisions in extracting protein-protein binding 
and activation interactions respectively. Our results were comparable to previous 
work which modified generic text processing systems which reported precision 
ranging from 53% [24] to 84% [5], suggesting this modification may not improve the 
efficiency of information retrieval. 

2   System Description 

We have developed a biological text mining system, known as Muscorian, for mining 
protein-protein inter-relationships in the form of subject-relation-object (for example,  
protein X  bind protein Y) assertions. Muscorian is implemented as a 3-module 
sequential system of entity normalization, text analysis, and protein-protein binding 
finding, as shown in Figure 1. It is available for academic and non-profit users 
through http://ib-dwb.sf.net/Muscorian.html. 

2.1   Entity Normalization 

Entity normalization is the substitution of the long form of either a biological or 
chemical term with its abbreviated form. This is essential to correct part-of-speech  
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Fig. 1. Schematic Diagram Illustrating the Operations of Muscorian 

tagging errors which are common in biological text due to multi-worded nouns. For 
example, the protein name “phosphatase and tensin homolog deleted on chromosome 
10” has to be recognized as a single noun and not a phrase. In this study, we attempt 
to mine protein-protein interactions and consolidate this knowledge to produce a map. 
Therefore, the naming convention of the protein entities must be standardized to allow 
for matching. However, this is not the case for biological text and synonymous 
protein names exist for virtually every protein. For example, “MAP kinase kinase”, 
“MAPKK”, “MEK” and “MAPK/Erk kinase” referred to the same protein. Both of 
these problems could be either resolved or minimized by reducing multi-worded 
nouns into their abbreviated forms. 

A dictionary-based approach was used for entity normalization to a high level of 
accuracy and consistency. The dictionary was assembled as follows: firstly, a set of 
25000 abstracts from PubMed was used to interrogate Stanford University's 
BioNLP server [3] to obtain a list of long forms with its abbreviations and a 
calculated score. Secondly, only results with the score of more than 0.88 were 
retained as it is an inflection point of ROC graph [3], which is a good balance 
between obtaining the most information while reducing curation efforts. Lastly, the 
set of long form and its abbreviations was manually curated with the help of domain 
experts. 

The domain experts curated dictionary of long forms and its abbreviated term was 
used to construct a regular expression engine for the process of recognition of the 
long form of a biological or chemical term and substituting it with its corresponding 
abbreviated form.  
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2.2   Text Analysis 

Entity normalized abstracts were then analyzed textually by an un-modified text 
processing engine, MontyLingua [14], where they were tokenized, part-of-speech 
tagged, chunked, stemmed and processed into a set of assertions in the form of 3-
element subject-verb-object(s) (SVO) tuple, or more generally, subject-relation-
object(s) tuple. Therefore, a sequential pattern of words which formed an abstract was 
transformed through a series of pattern recognition into a set of structurally-definable 
assertions. 

Before part-of-speech tagging is possible, an abstract made up of one or more 
sentences had to be separated into individual sentences. This is done by regular 
expression recognition of sentence delimiters, such as full-stop, ellipse, exclamation 
mark and question mark, at the end of a word (regular expression: ([?!]+|[.][.]+)$) 
with an exception of acronyms. Acronyms, which are commonly represented with a 
full-stop, for example “Dr.”, are not denoted as the end of a sentence and were 
generally prevented by an enumeration of common acronyms. 

Individual sentences were then separated into constituent words and punctuations 
by a process known as tokenization. Tokenization, which is essential to atomize a 
sentence into atomic syntactic building blocks, is generally a simple process of 
splitting of an English sentence in words using whitespaces in the sentence, resulting 
in a list of tokens (words). However, there were three problems which were corrected 
by examining each token. Firstly, punctuations are crucial in understand a written 
English sentence, but typographically a punctuation is usually joined to the presiding 
word. Hence, punctuation separation from the presiding word is necessary. However, 
it resulted in incorrect tokenization with respect to acronyms and decimal numbers. 
For example, “... an appt. for ...” will be tokenized to “... an appt . for ...” and “$4.20”' 
will be “$ 4 . 20”. This problem was prevented by pre-defining acronyms and using 
regular expressions, such as “^[$][0-9]{1,3}[.][0-9][0-9](?[.]?)$”. Lastly, common 
abbreviated words, such as “don't”, were expanded into two tokens of “do” and “n't”. 
Despite the above error correction measures, certain text such as mathematical 
equations, which might be used to describe enzyme kinetics in biological text, will not 
be tokenized correctly. In spite of this limitation, the described tokenization scheme is 
still appropriate as extraction of enzyme kinetics or mathematical representations are 
not the aims of this study. 

Each of the tokens (words and punctuations) in a tokenized sentence is then tagged 
using Penn TreeBank Tag Set [25] by a Brill Tagger, trained on Wall Street Journal 
and Brown corpora, which operates in two phases. Using a lexicon, containing the 
likely tag for each word, each word is tagged. This is followed by a phase of 
correction using lexical and contextual rules, which were learnt using training with a 
tagged corpora, in this case, Wall Street Journal and Brown corpora. Lexical rules 
uses a combination of preceding tag and prefix or suffix of the token (word) in 
question. For example, the rule “NN ing fhassuf 3 VBG” defines that if the current 
token is tagged as a noun (NN) and has a 3-character suffix of “ing”, then the tag 
should be a verb (VBG). On the other hand, contextual rules uses only the preceding 
or proceeding tags and hence, must be applied after lexical rules for effectiveness. 
The contextual rule “RB JJ NEXTTAG NN” defines that an abverbial tag (RB) 
should be changed to an adjective (JJ) if the next token was tagged as a noun (NN). A 
table of Penn Treebank Tag Set [25] without punctuation tags is given in Table 1. 
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Table 1. Penn Treebank Tag Set without Punctuation Tags (Adapted from [25]) 

Tag Description Tag Description 

CC Coordinating conjunction PRP$ Possessive pronoun 

CD Cardinal number RB Adverb 

DT Determinant RBR Adverb, comparative 

EX Existential there RBS Adverb, superlative 

FW Foreign word RP Particle 

IN Preposition or subordinating 
conjunction 

SYM Symbol 

JJ Adjective TO to 

JJR Adjective, comparative UH Interjection 

JJS Adjective, superlative VB Verb, base form 

LS List item marker VBD Verb, past tense 

MD Modal VBN Verb, past participle 

NN Noun, singular or mass VBG Verb, gerund or present 
participle 

NNS Noun, plural VBP Verb, non-3rd person singular 
present 

NNP Proper noun, singular VBZ Verb, 3rd person singular 
present 

NNPS Proper noun, plural WDT Wh-determiner 

PDT Predeterminer WP Wh-pronoun 

POS Possessive ending WP$ Possessive wh-pronoun 

PRP Personal pronoun WRB Wh-adverb 

By tagging, the complexity of an English sentence (ie, the number of ways an 
English sentence can be grammatically constructed with virtually unlimited words 
and unlimited ideas) was collapsed into a sequence of part-of-speech tags, in this case, 
Penn TreeBank Tag Set [25], with only about 40 tags. Therefore, tagging reduced the 
large number of English words to about 40 “words” or tags. 

Generally, an English sentence is composed of a noun phrase, a verb, and a verb 
phase, where the verb phrase may be reduced into more noun phrases, verbs, and verb 
phrases. More precisely, the English language is an example of subject-verb-object 
typology structure, which accounts for 75% of all languages in the world [7]. This 
concept of English sentence structure is used to process a tagged sentence into higher-
order structures of phrases by a process of chunking, which is a precursor to the 
extraction of semantic relationships of nouns into SVO structure. Using only the 
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sequence of tags, chunking was performed as a recursive 4-step process: protecting 
verbs, recognition of noun phrases, unprotecting verbs and recognition of verb 
phrases. Firstly, verb tags (VBD, VBG and VBN) were protected by suffixing the 
tags. The main purpose was to prevent interference in recognizing noun phrases. 
Secondly, noun phrases were recognized by the following regular expression pattern 
of tags:  

((((PDT )?(DT |PRP[$] |WDT |WP[$] )(VBG |VBD |VBN |JJ 
|JJR |JJS |, |CC |NN |NNS |NNP |NNPS |CD )*(NN |NNS 
|NNP |NNPS |CD )+)|((PDT )?(JJ |JJR |JJS |, |CC |NN 
|NNS |NNP |NNPS |CD )*(NN |NNS |NNP |NNPS |CD )+)|EX 
|PRP |WP |WDT )POS )?(((PDT )?(DT |PRP[$] |WDT |WP[$] 
)(VBG |VBD |VBN |JJ |JJR |JJS |, |CC |NN |NNS |NNP 
|NNPS |CD )*(NN |NNS |NNP |NNPS |CD )+)|((PDT )?(JJ 
|JJR |JJS |, |CC |NN |NNS |NNP |NNPS |CD )*(NN |NNS 
|NNP |NNPS |CD )+)|EX |PRP |WP |WDT ) 

Thirdly, the protected verb tags in the first step were de-protected by removing the 
suffix appended onto the tags. Lastly, verb phrases were recognized by the following 
regular expression:  

(RB |RBR |RBS |WRB )*(MD )?(RB |RBR |RBS |WRB )*(VB 
|VBD |VBG |VBN |VBP |VBZ )(VB |VBD |VBG |VBN |VBP |VBZ 
|RB |RBR |RBS |WRB )*(RP )?(TO (RB )*(VB |VBN )(RP )?)? 

After chunking, each word (token) was stemmed into its root or infinite form. 
Firstly, each word was matched against a set of rules for specific stemming. For 
example, the rule “dehydrogenised verb dehydrogenate” defines that if the word 
“dehydrogenised” was tagged as a verb (VBD, VBG and VBN tags), it would be 
stemmed into “dehydrogenate”. Similarly, the words “binds”, “binding” and 
“bounded” were stemmed to “bind”. Secondly, irregular words which could not be 
stemmed by removal of prefixes and suffixes, such as “calves” and “cervices”, were 
stemmed by a pre-defined dictionary. Lastly, stemming was done by simple removal 
of prefixes or suffixes from the word based on a list of common prefixes or suffixes. 
For example, “regards” and “regarding” were both stemmed into “regard”. 

Given the general nature of an English sentence is an aggregation of noun phrase, a 
verb, and a verb phase, where the verb phrase may be reduced into more noun 
phrases, verbs, and verb phrases, each verb phrase may be taken as a sentence by 
itself. This allowed for recursive processing of a chunked-stemmed sentence into 
SVO(s) by a 3-step process. Firstly, the first terminal noun phrase, delimited by 
“(NX” and “NX)” was taken as the subject noun. Secondly, proceeding from the first 
terminal noun phrase, the first terminal verb would be taken as the verb in the SVO. 
Lastly, the rest of the phrase was scanned for terminal noun phrases and would be 
taken as the object(s). The recursive nature of SVO extraction also meant that the 
subject, verb, and object(s) will be contiguous, which had been demonstrated to have 
better precision than non-contiguous SVOs [26]. 
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2.3   Protein-Protein Binding Finding 

The protein-protein binding finder module is a data miner for protein-protein binding 
interaction assertions from the entire set of subject-relation-object (SVO) assertions 
from the text analysis process using apriori knowledge. That is, the set of proteins of 
interest must be known, in contrast to an attempt to uncover new protein entities, and 
their binding relationships with other protein entities, that were not known to the 
researcher.  

Protein-protein binding assertions were extracted in a three step process. Firstly, a 
set of SVOs was isolated by the presence of the term “bind” in the verb clause 
resulting in a set of “bind-SVOs” assertions. Non-infinite forms of “bind” (such as, 
“binding” and “binds”) were not used as verbs were stemmed into their infinite forms 
during text processing. Secondly, the set of bind-SVOs were further characterized for 
the presence of protein entities in both subject and object clauses by comparing with 
the desired list of protein entities. A pairwise isolation of bind-SVOs for protein 
entities resulted in a set of bind-SVOs, “entity-bind-SVOs”, containing SVOs 
describing binding relationship between the protein entities. Lastly, entity-bind-SVOs 
were cleaned so that the subject and object clauses only contains protein entities. For 
example, “MAPK in the cytoplasm” in the object clause will be reduced to just the 
entity name “MAPK”, the full subject and object clauses could be used in other 
information extraction tasks, such as determining protein localization, but is not 
explored in this study. This step is required to allow for the construction of network 
graphs, such as using Graphviz, without reference to the list of protein names during 
construction. Given that protein_entities is the list of desired proteins, table SVO 
contains the SVO output from MontyLingua and table entity_bind_SVO contains the 
isolated and cleaned SVOs, the pseudocode for Protein-Protein Binding Finding 
module is given as: 

for subject_protein in protein_entities1 to n 

 for object_protein in protein_entities1 to n 

  insert (pmid, subject_protein, object_protein) into entity_bind_SVO  
   from select pmid  
   from (select * from SVO where verb = 'bind') 
   where subject is containing subject_protein 
   and object is containing object_protein 

3   Experimental Results 

Four experiments were carried out to evaluate the performance of Muscorian and 
demonstrate the flexibility of the two-layered generalization-specialization approach 
in constructing systems that could be readily be adapted to related problems. The 
results are summarized in Table 2. 

3.1   Benchmarking Muscorian Performance 

The performance of Muscorian, in terms of precision and recall, could only be 
evaluated using a defined data set with known results. For such purpose, the data set 
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Table 2. Summary of the Experimental Results Comparing the Precision and Recall Measures 

 LLL05 
Directional 

LLL05 Un-
directional 

Protein-Protein 
Binding 

Protein-Protein 
Activation 

Precision 55.8% 86.1% 88.1% 90.7% 

Recall 19.8% 30.7% Not measured Not measured 

for Learning Languages in Logic 2005 (LLL05) [9] was used to benchmark 
Muscorian on genic interactions, which is a superset of protein-protein binding 
interactions. LLL05 had defined a genic interaction as an interaction between 2 
entities (agent and target) but the nature of interaction was not considered under the 
challenge task. LLL05 provided a list of protein entities found in the data set, which 
was used to filter subject-relation-object assertions from text analysis 
(MontyLingua) output where both subject and object contained protein entities in 
the given list. The filtered list of assertions was evaluated for precision and recall, 
which was found to be 55.6% and 19.8% respectively. 

LLL05 required that the agent and target (subject and object) to be in the 
correct direction, making it a vector quality. However, this requirement was not 
biologically significant to protein-protein binding interactions, which is scalar. 
For example, “X binds to Y” and “Y binds to X” have no biological difference. 
Hence, this requirement of directionality was eliminated and the precision and 
recall was 86.1% and 30.7% respectively.  

3.2   Verifying Protein-Protein Binding Interactions 

Precision of Muscorian for mining protein-protein binding interactions from 
published abstracts was evaluated by manual verification of a sample of 
assertions (n=135) yielded by the protein-protein binding finder module against 
the original abstracts. Each of the sampled assertions was assumed to be atomic, 
in the form of “X binds Y”. In cases where there were more than one target, such 
as “X binds Y and Z”, they would be reduced to atomic assertions. In this case, 
“X binds Y and Z” would be reduced to 2 assertions, “X bind Y” and “X bind Z”. 
These were then checked with the original abstract, traceable by the PubMed IDs, 
and precision was measured as the ratio of the number of correct assertions to the 
number of sampled atomic assertions (which is 135). A 95% confidence interval 
was estimated by bootstrapping (re-sampling with replacement) [13] of the 
manual verification results. Our results suggested a precision of 88.1%, with a 
95% confidence interval between 82.4% to 93.7%. 

An IE trial was performed using the Protein-Protein Binding Finding module to 
search for the binding partners of CREB and insulin receptor and a sample 
network diagram of the results are shown in Figure 2 and 3 respectively. 
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Fig. 2. Preliminary Protein Binding  Network of CREB 

 

Fig. 3. Preliminary Protein Binding Network of Insulin Receptor  

3.3   Large Scale Mining of Protein-Protein Binding Interactions 

A large scale mining of protein-protein binding interactions was carried out using all 
of the PubMed abstracts on mouse (about 860000 abstracts), which were obtained 
using “mouse” as the keyword for searches, with a predefined set of about 3500 
abbreviated protein entities as the list of proteins of interest (available from 
http://cvs.sourceforge.net/viewcvs.py/ib-dwb/muscorian-data/protein_accession.csv? 
rev=1.2&view=markup). In this experiment, the primary aim was to apply Muscorian 
to large data set and the secondary aim was to look for multiple occurrences of the 
same interactions as multiple occurrences might greatly improve precision 
confidence. 

For example, given our lower confidence estimate that the precision of Muscorian 
with respect to mining protein-protein binding interactions is 82%, which means that 
every binding assertion has an 18% likelihood of not having a corresponding 
representation in the published abstracts. However, if 2 abstracts yielded the same 
binding assertion, the probability of both being wrong was reduced to 3.2% (0.182), 
and the corresponding probability that at least one of the 2 assertions was correctly 
represented was 96.8% (1-0.182). The more times the same assertion was extracted 
from multiple sources text (abstracts), the higher the possibility that the mined 
interaction was represented at least once in the set of abstracts. For example, if 5 
abstracts yielded the same assertion, the possibility that at least one of the 5 assertions 
was correctly represented would be 99.98% (1-0.185).  

Our experiment mined a total of 9803 unique protein-protein binding interactions, 
of which 7049 binding interactions were from one abstract (P=82%), 1297 binding 
interactions were from two abstracts (P=96.8%), 516 binding interactions were from 
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three abstracts (P=99.4%), 235 binding interactions were from four abstracts 
(P=99.9%), 164 binding interactions were from five abstracts (P=99.98%), 105 
binding interactions were from six abstracts (P=99.997%), 69 binding interactions 
were from seven abstracts (P=99.9993%), 398 binding interactions were from more 
than seven abstracts (P>99.9993%). 

3.4   Pilot Study - Protein-Protein Activation Interactions 

In order to demonstrate the adaptability of our proposed two-layered model, a small 
pilot study for mining protein-protein activation interactions was carried out. For this 
study, the protein-protein binding finder module, the data mining module for mining 
protein-protein binding interaction, was replaced with a protein-protein activation 
finder module.  

The protein-protein activation finder was semantically similar to the original 
protein-protein binding finder module as described in Section 3.3 previously. The 
only difference was that raw assertion output from MontyLingua was filtered for 
activation-related assertions, instead of binding-related assertions, before analysis for 
the presence of protein names in both subject and object nouns from a pre-defined list 
of proteins of interest. For example, by modifying the Protein-Protein Binding 
Finding module to look for the verb 'activate' instead of 'bind', it can then be used for 
mining protein-protein activation interactions. A trial was done for insulin activation 
and a subgraph is illustrated in Figure 4 below. 

 

Fig. 4. Preliminary Protein Activation Network of Insulin 

The precision measure of Muscorian for mining protein-protein activation 
interactions was calculated using identical means as described for protein-protein 
binding interactions. Using a sample of 85 atomic assertions, the precision of 
Muscorian for mining protein-protein activation interactions was estimated to be 
90.7%, with a 95% confidence interval of precision between 84.7% to 96.4% by 
bootstrapping [13]. 
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4   Discussion 

New research articles in gene expression regulation networks, protein-protein 
interactions and protein docking are emerging at a rate faster than what most 
biologists can manage to extract the data and generate working pathways. Information 
extraction technologies have been successfully used to process research text and 
automate fact extraction [1]. Previous studies in biological text mining have 
developed specialized text processing tools and adapted generic tools to relatively 
good performance of more than 80% in precision [5, 11, 20, 31]. However, either 
specialized tool development or modifying existing tools often require much effort 
[20]. The need to modify existing tools has not been formally tested and the 
possibility of using an un-modified generic text processor for biological text for the 
purpose of extracting protein-protein interaction remains unresolved. Using a two-
layered approach [29] of generalizing biological text into a structured intermediate 
form, followed by specialized data mining, we present Muscorian, which uses 
MontyLingua natively in the generalized layer, as a tool for extracting either protein-
protein or genic interactions from about 860000 published biological abstracts. 

Benchmarking Muscorian against LLL05, a tested data set, demonstrated a 
precision of 55.6%, which is about 5% higher than that reported in the conference and 
a recall of 19.7% is similar to that reported by other participants of LLL05 [9]. This 
may be due to the emphasis of LLL05 on F-measure, which is the harmonic mean of 
precision and recall, rather than putting more emphasis on precision. Nevertheless, 
this also suggested that Muscorian is able to perform text analysis for the purpose of 
extracting genic interactions effectively, which is comparable to specialized systems 
reported in LLL05. In addition, directionality of genic interactions was not a concern 
for protein-protein binding interactions as binding interaction is scalar rather than 
vector. By eliminating directionality of genic interactions, the precision and recall of 
Muscorian was 86.1% and 30.7% respectively. This suggested that Muscorian is a 
suitable tool for mining quality genic interactions from biological text compared to 
other tools reported in LLL05 [9].  

Our results on protein-protein binding and activation interactions show the insulin 
receptor binds  to IL-10 promoter through IRF and IRAK-1, which is an important 
insulin receptor signalling pathway. In addition, our data shows insulin activates 
CREB via Raf-1, MEK-1 and MAPK, which is consistent with the MAP kinase 
pathway. Combining these data (Figures 2 and 4) indicated that insulin activates 
CREB via MAP kinase pathway, and CREB binds to cpg15 promoter in the nucleus. 
A simple keyword search on PubMed, using the term “cpg15 and insulin” (done on 
30th of April, 2007), did not yield any results, suggesting that the effects of insulin on 
cpg15, also known as neuritin [2], had not been studied thoroughly. This might also 
suggest limited knowledge shared between insulin investigators and cpg15 
investigators as suggested by Don Swanson in his classical paper describing the links 
between fish oil and Raynaud's syndrome [34]. Neuritin is a relatively new research 
area with less than 20 papers published (as of 30th of April, 2007) and had been 
implicated as a lead for neural network re-establishment [18], suggesting potential 
collaborations between endocrinologists and neurologists. 

Our experiments in extracting two different forms of relations demonstrated that  
despite using specialized dictionaries in the generalized layer, it is still general to the 
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extend that specific application (the type of relationships to extract) was not built into 
the generalized layer. 

At the same time, these 2 experiments also illustrated the relative ease in re-
targeting the system for extracting another form of relationship by modifying the 
specialized layer. The Protein-Protein Activation Finder module is a slight 
modification of the original Protein-Protein Binding Finder module where the original 
SQL statement that selects 'bind'-related SVOs from total SVOs, “select * from SVO 
where verb = 'bind'”, was changed to “select * from SVO where verb = 'activate'” to 
select for 'activation'-related SVOs from total SVOs. Hence, it is plausible that similar 
changes may suffice for extracting other relationships, such as 'inhibition'. This 
relative ease of re-targeting the system for extracting other relationships also 
demonstrated the robustness of the generalization layer, as implied by Novichkova et. 
al. [29] – “the adaptability of the system to related problems other than the problem 
the system was designed for”. 

Given large numbers of published abstracts, the performance of Muscorian on 
precision was comparable with published values of BioRAT (58.7%) [12], GIS (84%) 
[5], Cooper and Kershenbaum (74%) [6] and CONAN (53%) [24] while Muscorian's 
recall was comparable with published values of Arizona Relations Parser (35%) [10] 
and Daraselia et. al. (21%) [11]. Poor precision was considered unacceptable because 
incorrect information is more detrimental than missing information (1 - recall) when 
protein-protein binding interactions were used to support other biological analyses. 
Muscorian's mediocre recall of 30% (from LLL05 test set evaluation) could be 
supplemented by the fact that the same interaction could be mentioned or described 
by multiple abstracts; thus, the actual recall when tested on a large corpus may be 
higher. For example, 30% recall essentially means a loss of 70% of the information; 
however, if the same information (in this case, protein interactions) were mentioned 
in 3 or more abstracts, there is still a reasonable chance to believe that information 
from at least 1 of the 3 or more abstracts will be extracted. This is supported by our 
results indicating that almost 30% (2754 of 9803) of binding interactions were 
extracted from more than one abstract. 

Multiple isolation of 2754 binding interactions enabled a higher confidence that 
these interactions were correctly extracted with reference to the source literature. 
Based on this analysis, 2754 binding interactions could be assigned higher confidence 
based on their occurrences [21], in this case more than 95% chance of being correct 
based on literature. In addition, the number of multiple interaction occurrence varies 
inversely with the number of abstracts these interactions were found in is in line with 
expectation. Although this line of argument is based on the assumption that the 
appearance of protein names across abstracts were independent, it can be reasonably 
held as this study uses abstracts rather than full text – abstracts tends to describe what 
main results of the particular article while the introduction of a full text article tends 
to be a brief background review of the field. Hence, independence of protein names 
can be better assumed in abstracts than in full text articles. 

An evaluation of a sample of atomic assertions (interactions) of binding and 
activation interactions between entities was performed by domain experts comparing 
the assertions with their source abstracts. Both approaches gave similar precision 
measures and are consistent with the evaluation using LLL05 test set. The ANOVA 
test demonstrated that there was no significant differences between these three 
precision measures. Taken together, these evaluations strongly suggested that 
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Muscorian performed with precisions between 86-90% for genic (gene-protein and 
protein-protein)  interactions, which was similar to that reported by studies either 
modifying existing tools [31] or developing specialized tools [11]. This suggested that 
MontyLingua could be used natively (un-modified), with good precision, to process 
biological text into structured subject-verb-objects tuples which could be mined for 
protein interactions.  
 
Acknowledgments. We wish to thank Prof. I-Fang Chung, Institute of Biomedical 
Informatics, National Yang Ming University, Taiwan, for his comments on improving 
the initial drafts. This work is sponsored by the CRC for Innovative Dairy Products, 
Australia, and Postgraduate Overseas Research Experience Scholarship, The 
University of Melbourne, Australia. 

References 

1. Abulaish, M., Dey, L.: Biological relation extraction and query answering from 
MEDLINE abstracts using ontology-based text mining. Data & Knowledge 
Engineering 61, 228 (2007) 

2. Cappelletti, G., Galbiati, M., Ronchi, C., Maggioni, M.G., Onesto, E., Poletti, A.: Neuritin 
(cpg15) enhances the differentiating effect of NGF on neuronal PC12 cells. Journal of 
Neuroscience Research (2007) 

3. Chang, J.T., Schutze, H., Altman, R.B.: Creating an online dictionary of abbreviations from 
MEDLINE. Journal of the American Medical Informatics Association 9, 612–620 (2002) 

4. Chiang, J.H., Yu, H.C.: MeKE: discovering the functions of gene products from 
biomedical literature via sentence alignment. Bioinformatics 19, 1417–1422 (2003) 

5. Chiang, J.H., Yu, H.C., Hsu, H.J.: GIS: a biomedical text-mining system for gene 
information discovery. Bioinformatics 20(1), 120 (2004) 

6. Cooper, J.W., Kershenbaum, A.: Discovery of protein-protein interactions using a 
combination of linguistic, statistical and graphical information. BMC Bioinformatics 6, 
143 (2005) 

7. Crystal, D.: The Cambridge Encyclopedia of Language, 2nd edn. Cambridge University 
Press, Cambridge (1997) 

8. Cunningham, H.: Software Architecture for Language Engineering. PhD Thesis. 
Department of Computer Science: University of Sheffield (2000) 

9. Cussens, J. (ed.): Proceedings of the Learning Languages in Logic Workshop 2005 (2005) 
10. Daniel, M.M., Hsinchun, C., Hua, S., Byron, B.M.: Extracting gene pathway relations 

using a hybrid grammar: the Arizona Relation Parser. Bioinformatics 20, 3370 (2004) 
11. Daraselia, D., Yuryev, A., Egorov, S., Novichkova, S., Nikitin, A., Mazo, I.: Extracting 

human protein interactions from MEDLINE using a full-sentence parser. 
Bioinformatics 20, 604–611 (2004) 

12. David, P.A.C., Bernard, F.B., William, B.L., David, T.J.: BioRAT: extracting biological 
information from full-length papers. Bioinformatics 20, 3206 (2004) 

13. Efron, B., Tibshirani, R.: Bootstrap Methods for Standard Errors, Confidence Intervals, 
and Other Measures of Statistical Accuracy. Statistical Science 1, 54–75 (1986) 

14. Eslick, I., Liu, H.: Langutils – A natural language toolkit for Common Lisp. In: 
Proceedings of the International Conference on Lisp 2005 (2005) 

15. Friedman, C., Alderson, P.O., Austin, J.H., Cimino, J.J., Johnson, S.B.: A general natural-
language text processor for clinical radiology. Journal of the American Medical 
Informatics Association 1, 161–174 (1994) 



 Reconstruction of Protein-Protein Interaction Pathways 299 

16. Friedman, C., Kra, P., Yu, H., Krauthammer, M., Rzhetsky, A.: GENIES: a natural-
language processing system for the extraction of molecular pathways from journal articles. 
Bioinformatics 17, S74–S82 (2001) 

17. Grover, C., Klein, E., Lascarides, A., Lapata, M.: XML-based NLP Tools for Analysing 
and Annotating Medical Language. In: Proc. of the 2nd Int. Workshop on NLP and XML 
(NLPXML-2002), Taipei (2002) 

18. Han, Y., Chen, X., Shi, F., Li, S., Huang, J., Xie, M., Hu, L., Hoidal, J.R., Xu, P.: CPG15, A 
New Factor Upregulated after Ischemic Brain Injury, Contributes to Neuronal Network Re-
Establishment after Glutamate-Induced Injury. Journal of Neurotrauma 24, 722–731 (2007) 

19. Hu, Z., Narayanaswamy, M., Ravikumar, K., Vijay-Shanker, K., Wu, C.: Literature 
mining and database annotation of protein phosphorylation using a rule-based system. 
Bioinformatics 21, 2759–2765 (2005) 

20. Jensen, L.J., Saric, J., Bork, P.: Literature mining for the biologist: from information 
retrieval to biological discovery. Nature Review Genetics 7, 119–129 (2006) 

21. Jenssen, T.K., Laegreid, A., Komorowski, J., Hovig, E.: A literature network of human 
genes for high-throughput analysis of gene expression. Nature Genetics 28, 21–28 (2001) 

22. Ling, M.H.T.: An Anthological Review of Research Utilizing MontyLingua, a Python-
Based End-to-End Text Processor. The Python Papers 1, 5–12 (2006) 

23. Liu, H., Singh, P.: ConceptNet: A Practical Commonsense Reasoning Toolkit. BT 
Technology Journal 22, 211–226 (2004) 

24. Malik, R., Franke, L., Siebes, A.: Combination of text-mining algorithms increases the 
performance. Bioinformatics 22, 2151–2157 (2006) 

25. Marcus, M.P., Santorini, B., Marcinkiewicz, M.A.: Building a Large Annotated Corpus of 
English: The Penn Treebank. Computational Linguistics 19, 313–330 (1993) 

26. Masseroli, M., Kilicoglu, H., Lang, F.M., Rindflesch, T.: Argument-predicate distance as a 
filter for enhancing precision in extracting predications on the genetic etiology of disease. 
BMC Bioinformatics 7, 291 (2006) 

27. Nasukawa, T., Nagono, T.: Text analysis and knowledge mining system. IBM System 
Journal 40, 967–984 (2001) 

28. National Library of Medicine, UMLS Knowledge Sources, 14th edn. (2003) 
29. Novichkova, S., Egorov, S., Daraselia, N.: MedScan, a natural language processing engine 

for MEDLINE abstracts. Bioinformatics 19, 1699–1706 (2003) 
30. Rebholz-Schuhmann, D., Kirsch, H., Couto, F.: Facts from Text - Is Text Mining Ready to 

Deliver? PLoS Biology 3, e65 (2005) 
31. Santos, C., Eggle, D., States, D.J.: Wnt pathway curation using automated natural 

language processing: combining statistical methods with partial and full parse for 
knowledge extraction. Bioinformatics 21, 1653–1658 (2005) 

32. Sleator, D., Temperley, D.: Parsing English with a Link Grammar. In: Proceedings of the 
3rd International Workshop on Parsing Technologies (1991) 

33. Smith, L., Rindflesch, T., Wilbur, W.J.: MedPost: a part-of-speech tagger for bioMedical 
text. Bioinformatics 20, 2320–2321 (2004) 

34. Swanson, D.R.: Fish oil, Raynaud’s syndrome, and undiscovered public knowledge. 
Perspectives in Biology and Medicine 30, 7–18 (1986) 

35. van Eck, N.J., van den Berg, J.: A novel algorithm for visualizing concept associations. In: 
Andersen, K.V., Debenham, J., Wagner, R. (eds.) DEXA 2005. LNCS, vol. 3588, 
Springer, Heidelberg (2005) 

36. Uramoto, N., Matsuzawa, H., Nagano, T., Murakami, A., Takeuchi, H., Takeda, K.: A 
text-mining system for knowledge discovery from biomedical documents. IBM System 
Journal 43, 516–533 (2004) 



J.C. Rajapakse, B. Schmidt, and G. Volkert (Eds.): PRIB 2007, LNBI 4774, pp. 300–310, 2007. 
© Springer-Verlag Berlin Heidelberg 2007 

Validation of Gene Regulatory Networks  
from Protein-Protein Interaction Data: 
Application to Cell-Cycle Regulation 

Iti Chaturvedi1,2, Meena Kishore Sakharkar2, and Jagath C. Rajapakse1 

1 Bioinformatics Research Center, Nanyang Technological University, Singapore 
2 Adams Lab, MAE, Nanyang Technological University, Singapore 

asjagath@ntu.edu.sg  

Abstract. We develop a technique to validate large-scale gene regulatory 
networks (GRN) by comparing with corresponding protein-protein interaction 
(PPI) networks. The GRN are obtained with Bayesian networks while PPI 
networks are obtained from database of known PPI interactions. We look for 
exact matches and then reduced networks by skipping one or more genes in 
GRN. We demonstrate our technique on expression profiles of differentially 
expressed genes in the S. cerevisiae cell cycle. We validate GRNs against a 
merged database of 53235 genes. The precisions of GRN obtained over all 
genes were from 0.82 to 0.95 in all the phases. In particular we realized that 
one-skip and two-skip model significantly improved accuracy of the GRN of 
different phases of cell cycle.   

Keywords: Dynamic Bayesian networks, gene regulatory networks, genetic 
algorithms, protein-protein interactions. 

1   Introduction 

A protein-protein interaction network (PPIN) has protein as nodes and the edges can 
be signaling, regulatory and biochemical interactions of the proteome. However, a 
Gene Regulatory Network (GRN) shows interaction of DNA segments of the genome 
with other substances of the cell, which results in regulating rates at which genes are 
transcribed to mRNA. This high throughput data has a large scope for organization in 
context of disease and biological function [1]. There is a need to explain the cellular 
machinery of a GRN in a systems biology perspective as seen by a  PPIN. A common 
representation of GRN is a ‘pathway model’ , a graph where vertices represent genes 
(or larger chromosomal regions) and arcs represent casual pathways. A vertex can 
either be off/normal or on/abnormal. Bayesian networks (BN) have recently become 
popular in deriving and deciphering GRN [2] and PPIN [3]. BN is a directed acyclic 
graph representing casual relations among interacting variables at the nodes. Pathway 
models have natural representations as BN.  

GRN is a model based on mRNA abundance, measured usually by microarrays, 
rendering an effective network of gene to gene interactions. DNA hybridization arrays 
simultaneously measure the expression levels of thousands of genes. Clustering-based 
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visual tools, such as hierarchical clustering [7] and SOM [8] assume that each gene 
belongs to only one cluster. Such algorithms attempt to locate groups of genes having 
similar expression patterns over a set of experiments and hence possibly co-regulated 
or having similar functions. This assumption fails where genes belong to two or more 
independent expression patterns. Traditional statistical methods for computing low-
dimensional or hidden representations of these data sets, such as principal component 
analysis (PCA)[9] and independent component analysis (ICA)[10], ignore the 
underlying interactions and provide a decomposition based purely on a priori 

statistical constraints on the computed component signals.  
Here our knowledge about a biological system is not directly expressed by a 

parameter vector of state variables, but instead is about the statistical dependencies (or 
independencies) called casual relationships among the variables. The casual 
dependencies among variables are represented by BN in terms of conditional 
probabilities, so they infer ‘cause and effect’ relationships. The nodes of BN 
mimicking GRN represent gene expressions, either by analog or discrete variables, 
and interactions by discrete and continuous multidimensional distributions [4]. 
Further, dynamic Bayesian networks (DBN) can model the stochastic evolution of a 
set of random genes over time and therefore temporal information of interactions 
efficiently [5]. DBN have advantages over hidden Markov models (HMM) whose 
parameterization grows exponentially with the number of state variables and over 
Kalman filters which is capable of handling only unimodal posterior distributions. BN 
and DBN are defined by a graphical structure and a set of parameters, which together 
specify a joint distribution over the variables it represents. The nodes in Bayesian 
network could represent either binary or continuous variables. One advantage of 
representing state variables as continuous Gaussian rather than discrete is that the 
posterior can be marginalized efficiently over time [6]. A special class of regulatory 
network models is one of linear time continuous models [11]. Analysis of gene 
expression reveals a considerable amount of time delayed interactions, suggesting that 
time delay is ubiquitous in gene regulation. State-space models with time delays of 
gene regulatory networks use Boolean variables to capture the existence of discrete 
time delays of the regulatory relationships among the internal variables [12].  

Various tools are now available to generate GRN from Microarray data using above 
models. Gene Networks [13] offers four models including the linear model, and 3 
genetic algorithm based models, S-system, Boolean networks, and Bayesian 
networks. BN uses a genetic algorithm adapted from REVEAL[14] to optimize the 
cost function which is a NP-hard problem. Linear differential model assumes that the 
change of each component over time is given by a weighted sum of all other 
components. In this model, the expression state at one time point determines the 
expression state observed at the next point However assumption of linear gene-
regulation relationship in unrealistic, complex systems, such as gene expression 
networks and metabolic pathways, are comprised of numerous richly interacting 
components. By representing states as binary variables and then connections by 
multinomial distributions, non-linear interactions among nodes can be represented in 
Bayesian networks. 

The GRN derived from gene expression data are often over-fitted. And some of the 
genes are masked by the activation of highly expressed similar genes. Here we try to 
enhance and validate GRN derived using Bayesian networks with corresponding 
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PPIN discovered from PPI databases. Validation of GRN is of vital importance for 
making inference on large scale pathways. Here we assume skipping of one or more 
genes in predicted gene interaction networks and, when mapping to a protein-protein 
interaction, allow for prodigies of genes. As seen later, this enhances the accuracy of 
GRN derived from gene expression data and increases true prediction of interactions 
without altering biological pathways. 

We demonstrate our technique with the yeast cell-cycle data, which contain 
differentially expressed genes in different phases of cell-cycle. Our results show that 
the sensitivity of BN in detecting genes of a common pathway can be improved with 
the validation using PPI. This paper is organized as follows: in Section 2, we explain 
how GRN are derived using BN Section 3 describes how GRN and PPIN are mapped. 
Experiments and results with yeast cell-cycle data are given in Section 4. Lastly, we 
draw conclusions from our findings.   

2   Gene Regulatory Networks 

2.1   Dynamic Bayesian Networks  

A BN is a graphical model representing joint multivariate probability distributions to 
capture the properties of conditional independencies among variables and consists of 
two components: a directed acyclic graph (DAG) structure, S , and a set of 
conditional distributions with parameters θ , of each variable, given its parents [15]. 
BN are unable to model stochastic systems evolving over time. Furthermore, they are 
unable to construct cyclic regulations (positive and negative feedback loop 
mechanisms) to regulate the activities of state variables at nodes typical of biological 
processes. Hence, we use dynamic Bayesian networks (DBN) to generate GRN. DBN 
makes the following assumptions: (1) the genetic regulation process is first-order 
Markovian, i.e., the expression state of one gene at one time point is dependent only 
on the expression state of other genes observed at the previous time point; (2) the 
dynamic casual relationships between genes are invariable over all the time slices, 
that is, the set of variables and probability definitions of a DBN are the same for each 
time points (i.e., stationarity). 

The dynamics of the DBN are hence defined in a transition network over two time 
slices, taken at time t  and time 1t +  as illustrated in Figure 1: The parameters are the 
probabilities of each variable, conditioned on the other variables at the previous one 
time point. Given the transition network over two time slices, the DBN is obtained by 
unrolling static transition BN over all time instances to determine the dynamics of 
stochastic variables over entire experiment. 

In a GRN, the nodes of the BN are represented by the expressions of genes and the 
edges by the causal effects. Let us consider a Bayesian network representing a set of 
gene expressions }X,....X,X{X n21= in a GRN consisting of n  genes. The joint 

probability of the expression of the genes is then be represented 

by )|X(P)X(P
i

n

1i
i ∏∏

=

=  where ∏i
 denotes the set of gene expressions of 

parent nodes of gene i  with expression X . We see that this metric is NP-hard but 
decomposable. 
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Fig. 1. Illustration of the transition network defining a dynamic Bayesian network consisting of 
n nodes. Fig. 2. Dotted line show the predicted interaction by a GRN (a) HTA1 interaction with 
HTB2 predicted by PPI which is same as by GRN (0-skip model) (b) HTA2 interaction with 
HHO1 predicted by PPI (1-skip model), GRN skips the gene YKU70 (c) HTB2 interaction with 
KIP1 predicted by PPI (2-skip model), GRN skipped 2 genes RPA135 and TUB2.   

Finding a Bayesian network that fits the gene expressions best requires a search over 
the model space of both structure S  and the interactions. Hence, a proper scoring 
function is needed to rank possible solutions and find the optimal solution. The posterior 
probability of a GRN, S , given gene expression data X , is given by, )X|S(P ∝  

)S(P)S|X(P where )S(P  gives the prior probability of the network structure and 

)S|X(P  the likelihood. We have taken 6 important assumptions. Firstly we assume a 

multinomial sample, given domain U and database X , let lX denote the first 1l − cases 

in the database. In addition, let ilx and ∏il
denote the variable ix and the parent set 

∏i
in the l th case, respectively. Then for all network structures sB in U , there exist 

positive parameters 
sBΘ such that, for n,...,1i = and for all 1i1 k,....,k,k − , 

s

h
il 1l 1 (i 1)l i 1 l B s ijkp(x k | x k ,...., x k ,X , , B , )− −= = = Θ ξ = θ . Where ξ  is the 

current state of information. Second assumption is of parameter independence, given 

network structure sB if 0)|B(p h
s >ξ then ∏

=

Θ=Θ
n

1i

h
si

h
sB ),B|(),B|(

s
ξρξρ , 

for :n,....,1i = ∏
=

Θ=Θ
iq

1j

h
sij

h
si ),B|(),B|( ξρξρ . Third assumption is that of 

parameter modularity which says that given two network structures 1sB and 2sB such 

that 0)|B(p h
1s >ξ  and 0)|B(p h

2s >ξ , and ix  has the same parameters in 1sB  

and 2sB , then ),B|(),B|( h
2sij

h
1sij ξρξρ Θ=Θ iq,....,1j = . Fourth is the 

assumption that the distribution is Dirichlet. Given the network structure sB such that  
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0)|B(p h
s >ξ . ),B|( h

sij ξΘρ is Dirichlet for all 
sBij Θ⊆Θ . That is, there exists 

exponents '
ijkN which depend on h

sB and ξ , that satisfy 

∏ −=Θ
k

1N
ijk

h
sij

'
ijk.c),B|( θξρ where c is a normalization constant. The fifth 

assumption is that the database is complete. That is there are no missing data. The 
final assumption is of likelihood equivalence that given two network structures  

1sB and 2sB  such that 0)|B(p h
1s >ξ and 0)|B(p h

2s >ξ , if 1sB and 2sB are 

equivalent, then ),B|(),B|( h
2sU

h
1sU ξρξρ Θ=Θ . The assumption of likelihood 

equivalence when combined with the previous assumptions introduces constraints on 

the Dirichlet exponents /
ijkN . The result is a likelihood-equivalent specialization of 

the BD metric , which we call the BDe metric. The marginal likelihood can be 
represented by the BDe metric [16].  

BDe = ∏∏∏
== = Γ

+Γ
+Γ

Γ ii r

1k
/
ijk

ijk
/
ijk

n

1i

q

1j ij
/
ij

/
ij

)N(

)NN(

)NN(

)N(
 

where  )x(Γ  is a Gamma function Dirichlet distribution. Each gene i can take a finite 

number of distinct states r such that }x,...x,x{X
ir21i =  and  is assumed to have a 

finite number of distinct state combinations of the parents, qi such that 

}a,...a,a{
iq21i

=∏ . /
ijkN  represents the Dirichlet prior parameters and ijkN the 

counts of interactions.  

2.2   Derivation of GRN Using a Genetic Algorithm  

A Genetic Algorithm (GA) is applied to effectively search the large solution space 
and to learn the network structure optimizing the BDe metric. We only consider 
binary interactions and therefore a solution individual is represented as a binary 
matrix which indicates the interaction states between genes and their parent genes (the 
genes that regulate them) where 1 denotes a regulation and 0 means no interaction. 

The solution nnj,i }c{C ×= , where ijc ∈ }1,0{ is the interaction between genes i  

and j . Using the solution C  we can calculate the terms /
ijkN , the parameters of prior  

[17], and ijkN , the number of observations (for the state defined by i , j  and k ) 

respectively where ki xX = , hence k  is state of gene i , also ji
a=∏ , j is the 

state combination of parents of i. Further,  ∑
=

=
jr

1k

/
ijk

/
ij NN  and ∑

=

=
ir

1k
ijkij NN . Then, 

using the equation above, we can get the BDe metric of the solution C .  
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The inputs to the genetic algorithm is a time-series data of expression of all genes. 
Genes in consecutive time points having similar expression levels can be said to have 
an interaction. The algorithm is as follows: 

Procedure for DBN-GA 
Begin 

Initialize: Randomly create P initial individuals that can be represented as a 
binary interaction matrix. 

While(until G generations) 
Evaluate the fitness function of each individual using BDe metric 
Select the elite individual to be passed on to next generation 

      Generate new individuals by selection, crossover and mutation. With the      
exception of the elite individual, the design code of each child (new 
individual) is created based on the design codes of two parents (old 
individual). Two parents are selected from the P individuals according to the 
probability proportional to their order of fitness (ranking or roulette 
strategy).  

End of While 
Build the gene regulation matrix based on the individual that has the largest 

fitness.  
End 

2.3   Missing Data 

A key problem for all models is a shortage of data. The raw gene expression data, 
usually in the form of large matrix, may contain missing values. This is a result of 
insufficient resolution, image corruption, or simply due to dust or scratches on the 
slide. KNNimpute (K Nearest Neighbors) method [18] is used to predict missing 
Microarray expression levels.  

3   Mapping of GRN and PPI 

3.1   Protein-Protein Interaction Networks (PPIN) 

Proteins frequently bind together in pairs or larger complexes to take part in 
biological processes. Most biological phenomena is due to a protein-protein 
interaction. There are several experimental techniques for determining protein-protein 
interaction data. Synthetic lethality[19], Affinity Capture-MS[20], and Yeast-2-
Hybrid [21]being the top few in our biogrid dataset.  

3.2   Motivation 

The derivation of BN, using the GA, is very sensitive to the population set of 
structures. Since we are trying to achieve a final maximum fitness, it is at the 
expenses of finding the set of solutions that are together most likely to be correct, 
which means individual correct solutions are left out because of this evolutionary 
population model. The networks or the solutions on the other hand aim to connect 
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genes which have similar expression profiles. Since a child gene follow the 
expression pattern of a parent gene which is regulating it. This results in skipping or 
missing genes in GRN, especially those with highly expressed genes. Therefore, often 
the GRNs derived using BN are often underestimated in the number of genes. In order 
to overcome this, we propose a technique that incorporates the knowledge from 
corresponding PPIN to infer the missing interactions in GRN. 

3.3   K-Skip Validation 

In order to account for the missing genes and interactions in GRN, we employ k-skip 
models of GRN which assumes that k-genes are skipped in estimating GRN between 
two parent genes. The simplest is called the one-skip model where one gene is 
skipped in GRN due to an interaction between two genes. One reason for this could 
be that mRNA from gene1 might not be directly interacting with mRNA from gene2. 
Rather the protein product from gene1 may alter the level of mRNA from gene2. An 
example could be a transcription factor, which may not occur by making more of it, 
but just by phosphorylation (post-translational modification) [22]. Also we are 
interested in finding genes which lie in the same pathway. Hence these one-skip and 
two-skip predictions are also of high importance to us.  

These models are defined as follows: 

0-skip Model: Indicates a direct interaction between proteins A and B  
1-skip Model: There exists a protein C such that both A and B interact with C 

according to 0-skip Model 
2-skip Model: There exists a protein D such that D interacts with A by 0-skip 

model and B by 1-skip model or vice versa. 
3-skip Model: There exists a protein D such that D interacts with A by 0-skip 

model and B by 2-skip model or vice versa. 

We illustrate the above different models in the Figure 2. Figure 2 (a) shows a Gene 
Interaction predicted : HTA1-HTB2, which has a corresponding interaction in PPI db. 
This will lie in the 0-skip model. (b) Shows an interaction HHT1-HTB2 which is not 
found in the PPI db, however a missing gene HTA1, shows they lie in the same 
pathway. This is called the 1-skip model. Similarly, (d) is an example of 2-skip 
model. We run BN on each of the 4 sets of genes under different values of two 
parameters namely, the number of generations and number of individuals in each 
generation (i.e. population size) at the genetic algorithm step. It is possible that the 
interaction incorrectly bypassed a single or multiple genes. The Gene Network 
software provides us with the Regulatory Matrix of the final optimal solution C .  

4   Cell-Cycle Regulation 

4.1   Data 

We illustrate our method using an application to cell-cycle regulation in yeast. Yeast 
has 40% genes have orthologus to human. Also it is non-pathogenic and hence can be 
tested for different interactions safely. We model GRN of the genes involved in the 
cell-cycle from an extended Spellman yeast dataset, which consists of mRNA 
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measurement of 6,178 genes of yeast S. cerevisiae [24]. Here we use the cdc15 
experimental data where cdc15 yeast strain is given a cdc-15 arrest (to the cell-cycle) 
by moving into an incubator at 37סC. The arrest is then removed by moving back to 
 C. Cells are then monitored together at different time points for presence of newס23
buds. 24 such time points are available from 10 to 290 mins. Cell-cycle control of 
transcription seems to be a universal feature of proliferating cells. Three main 
transcriptional waves which roughly coincide with three main cell-cycle transitions: 
initiation of DNA replication, entry into mitosis, and exit from mitosis. Proliferation 
of all cells is mediated though cell-division cycle which consists of four main phases: 
genome duplication (S phase) and nuclear division (mitosis or M phase), separated by 
two gap phases (GI and G2). Transcription of a number of genes peaks at specific 
cell-cycle phases. At the end of G1 phase, cells decide whether to commit to cell 
division in a process called start in yeast or restriction point in mammalian cells [23]. 
In this paper, we attempt to demonstrate our method by modeling GRNs involved in 
different phases of yeast cell cycle and then validating with the use of PPI data.   

We downloaded the list of phase specific genes from [24]. Our dataset consists of 118 
genes in G1, 36 genes in S phase, 34 genes in G2 and 60 genes in M phase respectively. 
Figure 3 shows the expression patterns of the 4 sets. We can see that G1 genes peak in 
time points 10 to 70 mins, then the S phase genes peak from 30 to 90mins, next is the 
G2 phase peaking 70 to 100 mins and lastly the M phase genes from time points 90 to 
130 mins. Hence we can say that they are all differentially expressed.  

 

Fig. 3. Expression levels of genes in different phases of yeast cell-cycle measured at 24 time 
points in the cdc-15 experiment 
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4.2   Experiments and Results 

Sensitivity of the model is very low. One of the methodologies proposed by us to 
overcome this is the K-skip model. The GRN software allows us to choose the 
number of Generations and population size of each generation, allowing for choice of 
combinations for tuning the correct number of predictions. Bayesian nets on our 4 
gene sets of cell-cycle under five experimental settings is presented (Figure 4). These 
predictions were then validated against the PPI data for inferring the correct 
predictions under the k-skip model. As seen the accuracy of DBN first increase and 
then decreases with the increase in complexity of searches. 

The cumulative curves for the correct number of predictions for four datasets is 
shown in Figure 4, G1 phase, S phase, G2 phase and M phase.  We downloaded yeast 
data from BIOGRID [25] and got a non-redundant validations dataset of 53,235 
protein interactions. It is observed that in all the graphs, there is a steep increase in the 
number of predictions by the one-skip model. Further increase is seen with the two-
skip model. However the three-skip model shows 0 interactions in all datasets. Hence 
while reading Bayesian nets one must take into account that the predictions might be 
bypassing one or two genes in the pathways.  

 

Fig. 4. Cumulative number of correct predictions for correct, one-skip, two-skip and three-skip 
model under 5 parameter settings  (i) 300 Generations, 200 Individuals, (ii) 300 Generations, 
300 Individuals, (iii) 400 Generations, 300 Individuals, (iv) 400 Generations, 400 Individuals, 
(v) 500 Generations, 400 Individuals 
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Table 1. Precision of Bayesian Networks for different cell-cycle phases. Average Precision is 
calculated over 5 runs with different parameter settings. 

 Number of Genes Average Precision Maximum Precision 

G1 118 0.76 0.82 
S 36 0.89 0.93 

G2 34 0.89 0.95 
M 60 0.80 0.84 

Precision for each GRN for different phases of cell-cycle which is defined as True 
Positive / Total Linkages was calculated. (Table 1). We notice a very high precision 
of over 80% in most trials. Which indicates that the Bayesian network is indeed 
picking up most interactions, however the accuracy is constrained by the one-
skip/two-skip model.  

Thus the advantages of Dynamic Bayesian Network include the ability to model 
stochasticity, to incorporate prior knowledge, and to handle hidden variables and 
missing data in a principled way. However, the discretization of gene expression by 
Bayesian network can lead to information loss. Also determining optimal structure of 
Bayesian networks is an NP-hard problem. Domain experts like the readability of 
trees in Bayesian networks however this is at the cost of accuracy.  

5   Conclusion 

We see a similar trend in all the 4 phases, confirming that a one-skip or two-skip bias 
exists in the model. This seems like a limitation of the model, as it looks for the best 
possible pathway. The proposed method may have diverse applications in 
understanding pathways involved in diseases. 

However we must realize the constraints of the model. Some genes are redundant in 
different stages of the cell-cycle. This can alter the graph. Also we know that protein 
interactions can be stable or transient . Transient interactions are on/off and require a 
set of conditions that promote them.  Finally we are testing the accuracy of a GN 
against a PPI database which is mostly generated from scientific literature and is not 
completely experimentally verified. Future work would involve accuracy testing 
against previous methods and other databases. 

References 

1. Nikolsky, Y.: Biological networks and analysis of experimental data in drug discovery. 
Drug discovery today 10(9), 653 (2005) 

2. Wyrick, J.J., Young, R.A.: Deciphering gene expression regulatory networks. Curr. Opin. 
Genet. Dev. 12(2), 130–136 (2002) 

3. Fromont-Racine, M., Rain, J.C., Legrain, P.: Toward a functional analysis of the yeast 
genome through exhaustive two-hybrid screens. Nature Genetics 16, 277–282 (1997) 

4. Duda, R.O.: Pattern classification [Book] 
5. Friedman, N., Linial, M., Nachman, I., Pe’er, D.: Using bayesian networks to analyze 

expression data. J. Computational Biology 7(3), 601–620 (2000) 



310 I. Chaturvedi, M.K. Sakharkar, and J.C. Rajapakse 

6. Lauritzen, S.: Graphical Models. Oxford University Press, Oxford (1996) 
7. Luo, F., Tang, K., Khan, L.: Hierarchical clustering of gene expression data. 

Bioinformatics and Bioengineering, 2003. In: Proceedings. Third IEEE Symposium, 10-12 
March, pp. 328–335 (2003) 

8. Wei, W., Xin, L., Min, X., Jinrong, P., Setiono, R.: A hybrid SOM-SVM method for 
analyzing zebra fish gene expression. Pattern Recognition, 2004. In: ICPR 2004. 
Proceedings of the 17th International Conference, vol. 2, pp. 323–326 (2004) 

9. Alter, O., Brown, P.O., Botstein, D.: Singular value decomposition for genome-wide 
expression data processing and modeling. Proc. Natl. Acad. Sci. USA 97, 10101–10106 
(2000) 

10. Lee, S., Batzoglou, S.: Application of Independent component analysis to microarrays. 
Genome Biology 4, R76 (2003) 

11. Bar-Joseph, Z.: Analyzing Time Series Gene Expression Data. Bioinformatics 20(16), 
2493–2503 (2004) 

12. Fang-Xiang, et al.: A Genetic Algorithm for Inferring Time Delays in Gene Regulatory 
Networks, CSB (2004) 

13. Wu, C.C., Huang, H., Juan, H., Chen, S.: Gene Networks: an interactive tool for 
reconstruction of genetic networks from microarray data. Bioinformatics advanced access 
(2004) 

14. Liang, S., Fuhrman, S., Somogyi, R.: REVEAL: a general reverse engineering algorithm 
for inference of genetic network architectures. In: Pacific Symposium on Biocomputing, 
vol. 3, pp. 18–29 (1998) 

15. Friedmann, N., Linial, M., Nachman, I., Pe’er, D.: Using Bayesian Networks to Analyze 
expression data. Journal of Computational Biology 7, 601–620 (2000) 

16. Heckerman, D., Geiger, D., Chickering, D.M.: Learning Bayesian networks: The 
combination of knowledge and statistical data. Machine Learning 9, 309–347 (1999) 

17. Friedman, N., Murphy, K., Russell, S.: Learning the structure of dynamic probabilistic 
networks. In: Proc. Fourteenth Conference on Uncertainty in Artificial Intelligence (UAI 
’98), pp. 139–147 (1998) 

18. Troyanskaya, O., et al.: Missing value estimation methods for DNA microarray. 
Bioinformatics 17(6), 520–525 (2001) 

19. Davierwala, A.P., et al.: Synthetic genetic interaction spectrum of essential genes. Nature 
Genetics 37(10), 1147–1152 (2005) 

20. Krogan, N.J., et al.: High-definition macromolecular composition of yeast RNA-
processing complexes. Mol. Cell 13(2), 225–239 (2004) 

21. Young, K.H.: Yeast Two-Hybrid: So Many Interactions (in) So Little Time. Biology of 
reproduction 58, 302–311 (1998) 

22. Page, D., Ong, I.M.: Experimental design of time series data for learning from dynamic 
Bayesian networks. PSB 11, 267–278 (2006) 

23. Bahler, J.: Cell-Cycle Control of Gene Expression in Budding and Fission Yeast. Annu. 
Rev. Genet. 39, 69–94 (2005) 

24. Spellman, et al.: Comprehensive Identification of Cell Cycle–regulated Genes of the Yeast 
Saccharomyces cerevisiae by Microarray Hybridization. Molecular Biology of the Cell 9, 
3273–3297 (1998) 

25. Stark, C., Breitkreutz, B.J., Reguly, T., Boucher, L., Breitkreutz, A., Tyers, M.: BioGRID: 
a general repository for interaction datasets. Nucleic Acids Res. 34, D535–D539 (2006) 



Rough Sets and Fuzzy Sets Theory Applied to

the Sequential Medical Diagnosis

Andrzej Zolnierek and Marek Kurzynski

Wroclaw University of Technology, Faculty of Electronics, Chair of Systems and
Computer Networks, Wyb. Wyspianskiego 27, 50-370 Wroclaw, Poland

{andrzej.zolnierek,marek.kurzynski}@pwr.wroc.pl

Abstract. Sequential classification task is typical in medical diagnosis,
when the investigations of the patient’s state are repeated several times.
Such situation always takes place in the controlling of the drug therapy
efficacy. A specific feature of this diagnosis task is the dependence be-
tween patient’s states at particular instants, which should be taken into
account in sequential diagnosis algorithms. In this paper methods for per-
forming sequential diagnosis using fuzzy sets and rough sets theory are
developed and evaluated. For both soft methodologies several algorithms
are proposed which differ in kind of input data and in details of classi-
fication procedures for particular instants of decision process. Proposed
algorithms were practically applied to the computer-aided medical prob-
lem of recognition of patient’s acid-base equilibrium states. Results of
comparative experimental analysis of investigated algorithms in respect
of classification accuracy are also presented and discussed.

1 Introduction

In many pattern recognition tasks there exist dependencies among the patterns
to be recognized. Such a task, henceforth called the sequential classification (SC)
task, involves dealing with a complex decision problem in which the sequences of
patterns should be recognized. For instance, in the medical diagnosis we have to
deal with such problems in which the patient’s state at a given time depends on
the preceding states. Although there remains no doubt about existence of this
dependence, it may be of a different nature and range; its simplest instance can
be a one-instant-backwards dependence to so complex arrangements as those
in which the current state depends on the whole former course of the disease
including the sequence of applied treatment as well. From the theoretical point
of view, during construction of an appropriate decision algorithm we must not
limit our approach only to the current feature vector but we have to consider
all the available measurement and observed data instead, as they may contain
important information about the recognized patient’s state at a given instant.
The measurement data can comprise all the features vectors and applied treat-
ments observed so far, thus the amount of data is very large and grows over
the time from one instant to another. In such a situation performing of SC task
various simplifications and compromises must be made. The dependence can be
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included at an as early stage as that of formulating a mathematical model for
the SC task, or as late as at the stage of selecting the appropriate input data
set in the decision algorithm which otherwise does not differ from the classical
recognition task. In this paper the second approach is presented. It can be called
data-oriented, while it uses methods developed in the field of computational in-
telligence such as fuzzy logic, rough sets theory and genetic algorithms. These
methods are recently becoming increasingly popular in the pattern recognition
as an attractive alternative to statistical approach. They can perform classifica-
tion from both labeled and unlabeled training sets as well as acquire and explore
the human expert knowledge. They have been successfully applied in classical
pattern recognition tasks, i.e. without taking into account the context [6], and in
the sequential classification task [7], [17]. Although the information about former
applied treatment can be useful for physicians but including such information in
model of recognition requires simplifying assumptions. In consequence in such
case, in respective pattern recognition algorithms with learning the number of
unknown parameters is growing. It requires more medical data in learning pro-
cess, but the number of medical data is as usual limited. Then in this chapter
comparative analysis of such methodologies, but without taking into account the
treatment process, to the problem of medical sequential diagnosis (classification
of states of acid-base balance) is described. Let us stress that there are many
possible methods for performing sequential diagnosis, but the aim of this work
was to compare approaches using fuzzy sets and rough set theory, because both
are data-oriented and do not require any additional assumptions. After prelimi-
naries and problem statement, we present several algorithms of SC, which differ
from each other using different kind of input data and using either fuzzy logic
or rough sets methodology. All presented algorithms were practically applied to
the problem of sequential medical diagnosis and results can be found at the end
of this chapter.

2 Preliminaries and the Problem Statement

We will treat the sequential classification (SC) task as a discrete controlled
dynamical process. The pattern (patient) is at the n-th instant in the state
jn ∈ M , where M is an m-element set of possible states numbered with the
successive natural numbers, thus

jn ∈ M = {1, 2, . . . , m}. (1)

Obviously, the notion of instant has no specific temporal meaning here, as its
interpretation depends on the character of the medical case under consideration.
The actual used measure may be minutes, hours, days or even weeks. The pa-
tient’s state jn is unknown and does not undergo our direct observation. What
we can only observe are the symptoms by which a state manifests itself. We
will denote an d-dimensional symptom vector measured at the n-th instant by
xn ∈ X (thus X is the observation space). As already mentioned, the patient’s
current state depends on the history and thus in the general case the decision
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algorithm must take into account the whole sequence of the preceding symptom
vectors x̄n = {x1, x2, . . . , xn} and the course of treatment process. It must be
underlined here that sometimes it may be difficult to include all the available
data, especially for bigger n. In such cases we have to allow some simplifications
(e.g. do not take into account the treatments or take into account only several
recent values in the sequence of symptom vectors x̄n .

In order to classify such sequences of patient’s states we need some more
general information to take a valid decision, namely the a priori knowledge
concerning the general associations that hold between decisions on the one hand,
and the sequence of feature on the other. This knowledge may have multifarious
forms and various origins. From now on we assume that it has the form of
so called training set, which in the investigated diagnostic task consists of N
training sequences (patient’s records):

S = {S1, S2, ..., SN}, (2)

A single patient’s record:

Sk = ((x1,k, j1,k), (x2,k, j2,k), ..., (xL,k, jL,k)) (3)

denotes a single dynamic process course that comprises L feature observations
instatnts and the patient’s states. Analysis of the SC task implies that, when
considered in its most general form, the explored decision algorithm should use
in the n-th instant the whole available observed data i.e. the sequences of all
feature vectors x̄n as well as the knowledge included in the training set S. In
consequence, the algorithm is of the following form:

in = Ψn(S, x̄n), n = 1, 2, . . . , in, in ∈ M. (4)

The next chapters describe in depth the construction of the sequential diagnosis
algorithms (4) using various concepts based on fuzzy and rough sets theory.

3 Algorithms of SC Based on Fuzzy Sets Theory

In this section we will apply the fuzzy sets theory to the construction of SC
algorithm (4). Two approaches will be considered:

– Mamdani inference system for fuzzy rules with procedure of generating fuzzy
rules from learning set developed for sequential classification,

– application of fuzzy relation defined on Cartesian product of input data and
class number set obtained from the learning set as a solution of appropriate
optimization problem.

For both concepts corresponding algorithms will be proposed which differ in
kind of input data and details of classification procedures for particular instants
of decision process.
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3.1 Fuzzy Method with Mamdani Inference System

This concept consists in applying the inference engine from a fuzzy rule system
to construction decision algorithms for SC task. For all the algorithms presented
below we assume the following general form of the k-th rule in the system (k =
1, 2, ..., K), which associate an observation vector a = (a(1), a(2), ..., a(da)) with
class numbers:

IF a(1) isA1,k AND · · · AND a(L) isAL,k THEN Bk. (5)

Ai,k are fuzzy sets (which membership functions are designated by μAi,k
) that

correspond to the nature of particular input observations, whereas Bk is a dis-
crete fuzzy set defined on the class number set M, with the μBk

membership
function.

The only difference between the algorithms is the form of observation vector
a and its relation with features of pattern to be recognized and, what follows,
the procedure for rule system (5) derivation from the learning set (2).

As recognition algorithm the Mamdani fuzzy inference system has been ap-
plied [1], [16]. In this system we use the minimum t-norm as AND connection in
premises, product operation as conjunctive implication interpretation in rules,
the maximum t-conorm as aggregation operation, and finally the maximum de-
fuzzification method.

Two methods can be used to obtain collection of fuzzy if-then rules (5) in the
construction of fuzzy system:

– from human expert or based on domain knowledge,
– extraction of rules using numerical input-output data.

One of the best known method of rules generating from the given training pat-
terns set (2), is the method proposed by Wang and Mendel [15], which developed
for the SC will be applied in the further algorithms.

Algorithm Without Context (Mamdani-0). In this case the SC is consid-
ered as a sequence of single independent tasks without taking into account the
associations that may occur between them. Such approach leads to the classical
concept of recognition algorithm, which assigns a pattern at the n-th instant to
a class on the base of its features only, namely:

in = Ψ(S, xn), n = 1, 2, ..., in ∈ M. (6)

Thus it will be obtained assuming a = xn for the n-th instant. Now, rule deriva-
tion is performed based on the whole training set S for which neither the division
into sequences Sk nor element succession in the sequence is pertinent. Resulting
procedure is following:

1. Cover the space X (l) of the individual feature x(l) (l = 1, 2, ..., d) by overlap-
ping fuzzy sets corresponding to the linguistic “values” of this feature (e.g.
small, medium, big, etc.). For each fuzzy set define its membership function.



Rough Sets and Fuzzy Sets Theory 315

Obtained fuzzy sets state premises Ai,k in fuzzy rules (5). For example, in the
further practical medical diagnosis task, we used triangular fuzzy numbers
with 3 regular partitions [6].

2. For each example generate fuzzy rule with premises corresponding to fuzzy
regions with the highest membership grade of appropriate feature.

3. Find the rules with the same premises and aggregate them into one rule.
4. Determine the discrete fuzzy conclusion of the rule (fuzzy set), for which

μBk
(j) =

nk(j)∑
j nk(j)

, j ∈ M, (7)

where nk(j) denotes the number of learning patterns from j-th class fulfilling
the k-th rule.

Algorithm with k-th Order Context (Mamdani-k). This algorithm makes
allowance for the k-instant-backwards dependence using full bulk of the measure-
ment data. In effect, we have now a = (xn, xn−1, · · · , xn−k) and rule derivation
is achieved based on the whole training set S, taking into account the succession
of particular k elements in sequences Si .

3.2 Algorithms Using Fuzzy Relations

Algorithm Without Context (Relation-0). This algorithm, as algorithm
Mamdani-0, includes no inter-state dependences on a state but it utilizes only the
current feature values instead. Application of fuzzy relation to the construction
of classifier (6) from the learning set (2) containing N × L patterns (now the
order of patterns in the sequences (3) is irrelevant) is well known in literature
[10], [12], [13] and resulting procedure comprises the following items:

1. Cover the space X (l) of the individual feature x(l) (l = 1, 2, ..., d) by overlap-
ping fuzzy sets corresponding to the linguistic ”values” of this feature (e.g.
small, medium, big, etc.). For each fuzzy set define its membership function.
Obtained fuzzy sets state fuzzified feature space X (l)

F of individual features.
Create fuzzified feature space as a product XF = X (1)

F ×X (2)
F × ...×X (d)

F . Let
its cardinality be equal to dF - this value depends on number of partitions
and the size of feature vector. For example, in the further practical medical
diagnosis task, d = 3 and we used triangular fuzzy numbers with 3 regular
partitions, which gave dF = 27.

2. Determine observation matrix O(S) of learning set S, i.e. fuzzy relation
defined on product of fuzzified feature space XF and learning set S. The ith
row of O(S) (i = 1, 2, ..., N ×L) contains membership degrees of features of
ith learning pattern to fuzzy sets of space XF . The number of columns of
O(S) is equal to dF .

3. Determine decision matrix D(S), i.e. relation defined on product of learning
set S and the set of decisions (classes) M. For the training data, where the
classification is exactly known, the ith row is a fuzzy singleton set, i.e. a



316 A. Zolnierek and M. Kurzynski

vector of all zeros except for a one at the place corresponding to the class
number of ith learning pattern.

4. Find matrix E(S) as a solution of so-called fuzzy relational equation ([11],
[13]):

O(S) ◦ E(S) = D(S), (8)

or - in approximate way - as a solution of the following optimization problem:

ρ(O(S) ◦ E(S), D(S)) = minE ρ(O(S) ◦ E, D(S)), (9)

where criterion ρ(A, B) evaluates difference between matrices A and B, i.e.
ρ(A, B) ≥ 0 and ρ(A, B) = 0 iff A = B. Operator ◦ denotes here max-
min-norm composition of relations, i.e. multiplication of matrices O and E
with × and + operators replaced by min and max operators (more general
by t-norm and s-norm operators)([1]). In the further practical example we
decided to select the method of determination of matrix E, adopting

ρ(A, B) =
∑
i,j

(aij − bij)2 (10)

and applying as an optimization procedure real-coded genetic algorithm.

Matrix E(S) is a fuzzy relation defined on product of decision set M and feature
space XF , in which reflects knowledge contained in the learning set. To classify a
new pattern x, first the row-matrix of fuzzy observation O(x) is calculated from
known vector of its features [x(1), x(2), ..., x(d)]. Then matrix E(S) is applied to
compute an output row-matrix called target vector ([14]):

O(x) ◦ E(S) = T (x) = [t1(x), t2(x), ..., tM (x)], (11)

which gives a fuzzy classification in terms of membership degrees ti(x) of the
pattern x to the given classes i = 1, 2, ..., m . When a crisp decision is required,
defuzzification has to be applied, typically according to the maximum rule.

Algorithm with k-th Order Context (Relation-k). This algorithm in-
cludes k-instant-backwards-dependence (k < L) with full measurement data,
i.e. the decision at the n-th instant is made on the base of vector of features:

x̄(k)
n = (xn−k, xn−k+1, ..., xn−1, xn). (12)

Although, the main concept of the proposed methods of SC is the same as for
independent patterns, there are many differences concerning details in procedure
of construction of matrix E and course of recognition process.

Before we will describe these algorithms let us first introduce set S(k) contain-
ing sequences of (k+1) learning patterns from S and set S(k)

j̄(k) - as previously but
in which at the first k position additionally the sequence of classes j̄(k) ∈ Mk ap-
pears. Consequently, the algorithm with k-th order dependence (Relation k) and
full measurement features can be presented according to the following points:
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1. Create the fuzzified feature space XF as in the procedure for independent
patterns

2. Determine observation matrix O(k), i.e. fuzzy relation in the space X k
F =

XF ×XF ×· · ·×XF (k times) and learning subset S(k). The ith row of obser-
vation matrix contains memberships degrees of features x̄(k) of ith learning
sequence from S(k) to the fuzzy sets of space X k

F .
3. Determine decision matrix D(k), i.e. relation defined on product of learning

sequences S(k) and the set of decisions (classes) M. The ith row of D(k) is
a vector of all zeros except for a one at the place corresponding to the last
class number of ith sequence in the set S(k).

4. Find matrix E(k) , so as to minimize criterion

ρ(O(k) ◦ E(k), D(k)). (13)

Next, at the nth step of sequential recognition first the row-matrix of fuzzy
observation O(x̄(k)

n ) is calculated from known sequence of feature observations
(12). Then matrix E(k) is applied to compute a target vector of soft decisions:

O(x̄(k)
n ) ◦ E(k) = T (x̄(k)

n ), (14)

and final crisp decision is obtained after defuzzification step.

4 Algorithms of SC Based on Rough Sets Theory

In this section we will apply the rough sets theory [9] to the construction of SC
algorithm (4).

Now, the training set (2) is considered as an information system S = (U, A),
where U and A, are finite sets called universe and the set of attributes, respec-
tively. For every attribute a ∈ A we determine its set of possible values Va, called
domain of a. Such information system can be represented as a table, in which
every row represents a single sequence (3). In successive column of k-th row of
this table we have values of the following attributes:

x
(1)
1,k, x

(2)
1,k, ..., x

(d)
1,k, j1,k, x

(1)
2,k, x

(2)
2,k, ..., x

(d)
2,k, j2,k, ..., x

(1)
L,k, x

(2)
L,k, ..., x

(d)
L,k, jL,k. (15)

In such an information system we can define in different way the subset C ⊆ A
of condition attributes and the single-element set M ⊆ A which will be the
decision attribute. Consequently, we obtain the decision system S = (U, C, M)
in which, knowing the values of condition attributes, our task is to find the
value of decision attribute, i.e. to find appropriate pattern recognition algorithm
of sequential classification. Of course, as in algorithms based on fuzzy sets theory,
we can choose the subset of condition attributes in different way. Taking into
account the set of condition attributes C, let us denote by Xj the subset of U
for which the decision attribute is equal to j, j = 1, ..., m. Then, for every j
we can defined respectively the C-lower approximation C∗(Xj) and the C-upper
approximation C∗(Xj) of set Xj [9], [17]. Hence, the lower approximation of set
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Xj is the set of objects x ∈U , for which knowing values of condition attributes
C, for sure we can say that they are belonging to the set Xj . Moreover, the upper
approximation of set Xj is the set of objects x ∈U , for which knowing values of
condition attributes C, for sure we can not say that they are not belonging to
the set Xj . Consequently, we can define C-boundary region of Xj as follows:

CNB(Xj) = C∗(Xj) − C∗(Xj). (16)

For every decision system we can formulate its equivalent description in the
form of set of decision formulas For(C). Each row of the decision table will be
represented by single if-then formula, where on the left side of this implication
we have logical product (and) of all expressions from C such that every attribute
is equal to its value. On its right side we have expression that decision attribute
is equal to the one number of class from (1). These formulas are necessary for
constructing different pattern recognition algorithms for sequential classification.

4.1 Algorithm Without Context (Rough-0)

As usual, we start with the algorithm without the context which is well known
in literature ([3], [5], [9], [10]). In this case our decision table contains N × L
patterns, each having d condition attributes (features) and one decision attribute
(the class to which the pattern belongs).

Application of rough set theory to the construction of classifier (6) from the
learning set (2) can be presented according to the following items:

1. If the attributes are the real numbers then the discretization preprocessing is
needed first. After this step, the value of each attribute is represented by the
number of interval in which this attribute is included. Of course for different
attributes we can choose the different numbers of intervals in order to obtain
their proper covering and let us denote for l-th attribute (l = 1, ..., d) by νl

pl
its pl-th value or interval.

2. The next step consists in finding the set For(C) of all decision formulas from
(2), which have the following form:

IF (x(1) = νl
p1) AND ...AND (x(d) = νd

pd) THEN Ψ(S, x) = j. (17)

Of course, it can happen that from the learning set (2) we obtain more than
one rule for particular case. Then for such a formula (17) we determine its
strength factor [5], which is the number of correctly classified patterns during
learning procedure. If any case in (2) is single then the strength factor of
corresponding rule is equal to one.

3. For the set of formulas For(C), for every j = 1, ..., m we calculate their
C-lower approximation C∗(Xj) and their boundary regions CNB(Xj).

4. In order to classify xn (after discretization its attributes if it is necessary)
we look for matching rules in the set For(C), i.e. we take into account such
rules in which the left condition is fulfilled by the attributes of recognized
pattern.
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5. If there is only one matching rule, then we classify this pattern to the class
which is indicated by its decision attribute j, because for sure such rule is
belonging to the lower approximation of all rules indicating j, i.e. this rule
is certain.

6. If there is more then one matching rule in the set For(C), it means that
the recognized pattern should be classified by the rules from the boundary
regions CNB(Xj), j = 1, ..., m and in this case as a decision we take the
index of boundary region for which the strength of corresponding rule is
maximal. In such a case we take into account the rules which are possible.

4.2 Algorithm with k-th Order Context (Rough-k)

Although as in [17], we could take into account at n-th instant whole available
information about the state of recognized sequential process,for the same reason
as previously let us choose the following decision atributes in our decision table:

x
(1)
n−k, ..., x

(d)
n−k, x

(1)
n−k+1, ..., x

(d)
n−k+1, ..., x

(1)
n−1, ..., x

(d)
n−1, ..., x

(1)
n , ..., x(d)

n . (18)

This means that algorithm includes k-instant-backwards-dependence (k < L)
with full measurement data. Let us denote by D the total number of decision
attributes (former was D = d and now D = (k + 1) × d + k). Next, from the
(2), we can create the decision table which will have D + 1 column (the last
one is the true classification of n-th recognized pattern) and consequently the
number of rows will be equal to N × (L − k) , because from each sequence
(3) we can obtain L − k subsequences of the length k + 1. The main idea
of the proposed methods of SC is the same as for independent patterns but
there are differences concerning details in procedure of construction of the set
of decision formulas For(C). Now, the decision formulas are of the following
form:

IF (x(1) = νl
p1) AND ...AND (x(D) = νD

pD) THEN Ψ(S, x̄(k)
n ) = jn (19)

The next steps of SC are the same as previously, i.e. we calculate C∗(Xjn)
and CNB(Xjn) and finally, the decision is made according to same procedure.

All the decision algorithms that are depicted in the previous sections have
been experimentally tested in respect of the decision quality (frequency of cor-
rect classifications) for real data that concern recognition of human acid-base
equilibrium states (ABE).Results of experimental investigations are presented
in the next section.

5 Medical Example: Sequential Diagnosis of Acid-Base
State Balance

In the course of many pathological states, there occur anomalies in patient’s or-
ganism as far as both hydrogen ion and carbon dioxide production and elimina-
tion are concerned, which leads to disorders in the acid-base equilibrium (ABE).



320 A. Zolnierek and M. Kurzynski

Thus we can distinguish acidosis and alkalosis disorders here. Each of them can
be of metabolic or respiratory origin, which leads to the following ABE states
classification: metabolic acidosis, respiratory acidosis, metabolic alkalosis, respi-
ratory alkalosis, correct state.

In the process of treatment, correct recognition of these anomalies is indis-
pensable, because the maintenance of the acid-base equilibrium, e.g. the pH
stability of the fluids is the essential condition for correct organism functioning.
Moreover, the correction of acid-base anomalies is indispensable for obtaining
the desired treatment effects.

In medical practice, only the gasometric examination results are made to
establish fast diagnosis, although the symptom set needed for correct ABE esti-
mation is quite large. The utilized results are: the pH of blood, the pressure of
carbon dioxide, the current dioxide concentration.

An anomalous acid-base equilibrium has a dynamic character and its changes
depend on the previous state, and in consequence they require frequent exami-
nations in order to estimate the current ABE state. It is clear now that the SC
methodology presented above suits well the needs of computer aided ABE diag-
nosing. The current formalization of the medical problem leads to the task of the
ABE series recognition, in which the classification basis in the n-th moment con-
stitutes the quality feature consisting of three gasometric examinations. And the
set of diagnostic results M is represented by 5 mentioned acid-base equilibrium
states.

The diagnostic algorithms applied to the ABE which state sequential diagnosis
task have been worked out on the basis of evidence material that was collected in
Neurosurgery Clinic of Medical Academy of Wroclaw and constitutes the set of
training sequences (2). The material comprises 78 patients (78 sequences) with
ABE disorders caused by intracranial pathological states for whom the gasomet-
ric examination results and the correct ABE state diagnosis were regularly put
down on the 12-hour basis. There were around 20 examination cycles for each
patient, yielding the total of 1416 single examination instances.

To compare the classification accuracy of proposed concepts of SC algorithms
and the performance of RGA, ten independent runs of RGA were carried out for
each diagnostic algorithm with different random initial populations. The results
are shown in Table 1. The values depicted in the table are those of the best
solution obtained at the end of a RGA trial. Table 1 contains also the best
result, the mean value and standard deviation for each SC algorithm. In testing
of Mamdani inference system and algorithms based on rough sets theory, the
cross validation method was used, i.e. for every trial ten testing sequences were
chosen randomly.

These results imply the following conclusions:

1. Algorithms Mamdani-0, Relation-0 and Rough-0 that do not include
the inter-state dependencies and treat the sequence of states as independent
objects are worse than those that have been purposefully designed for the se-
quential medical diagnosis task, even for the least effective selection of input
data. This confirms the effectiveness and usefulness of the conceptions and
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Table 1. Frequency of correct diagnosis for various diagnostic algorithms (in per cent)

Trial Ma-0 Ma-1 Ma-2 Re-0 Re-1 Re-2 Ro-0 Ro-1 Ro-2

1 66.9 72.1 67.3 80.6 89.6 91.8 83.5 85.7 90.1
2 68.1 69.2 70.2 82.2 86.5 91.9 85.1 86.1 89.6
3 67.5 70.1 70.1 79.4 87.2 88.9 83.8 88.0 91.1
4 68.0 71.2 71.6 78.5 85.9 92.6 84.0 88.5 92.0
5 67.8 69.1 71.2 80.9 90.3 91.9 83.6 87.6 89.8
6 67.9 70.0 69.4 82.1 89.7 91.6 85.7 86.4 89.9
7 67.2 71.2 70.9 81.9 88.1 89.4 83.1 85.1 90.2
8 68.7 69.8 71.2 78.3 87.2 89.0 85.9 86.9 91.4
9 67.1 68.6 70.4 78.5 90.7 92.9 83.4 88.9 91.3
10 67.0 68.2 67.6 81.1 88.7 92.8 86.9 87.8 91.2

Best 68.7 72.1 71.6 82.2 90.7 92.9 84.0 88.9 92.0
Mean 67.6 70.0 70.0 80.3 88.4 91.3 84.5 87.1 90.7

algorithm construction principles presented above for the needs of sequential
diagnosis.

2. There occurs a common effect within each algorithm group: the model of the
second order dependency (Mamdani-2, Relation-2, Rough-2) turns out
to be more effective than the first order dependence approach (Mamdani-1,
Relation-1, Rough-1).

3. There is no essential difference among the algorithms using the same input
data which are based either on fuzzy relation method or on rough sets theory.

4. The RGA method is capable of solving the problem of learning of SC al-
gorithm for practical computer-aided medical diagnostic system. Results of
RGA performances turn out to be quite repeatable and insensitive to initial
conditions.

It must be emphasized that proposed procedures leads to the very flexible
sequential recognition algorithm due to optional value of k. In particular the
value of k need not be constant but it may dynamically change from step to
step. So, the choice k = n−1 for n-th instant of sequential classification denotes
the utilization of the whole available information according to the general form
of decision rule (4). On the other hand however, such a concept - especially for
bigger n - is rather difficult for practical realization.

6 Conclusions

The aim of this work was comparative analysis of soft computing methods ap-
plied to the sequential classification tasks in which there exist dependencies
among the patterns to be recognized. Two approaches to SC task were con-
sidered: using fuzzy sets theory and using rough sets theory. For both of them
corresponding algorithms were proposed, without taking into account the treat-
ment directly (of course results of treatment are observed indirectly in feature
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vectors). The empirical results show that in such case the accuracy of classifi-
cation can be improved taking into account such dependencies however, more
empirical studies are required. Moreover, in presented practical example there
is no essential difference among the results of algorithms using the same input
data which are based either on fuzzy sets or on rough sets theory. It means, that
such soft computing methods in SC task can be considered as complementary.
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Abstract. Comparative genomic analysis between pathogens and the host 
Homo sapiens has led to identification of novel drug targets. Microbial drug 
target identification and validation has been the latest trend in 
pharmacoinformatics. In order to identify a suitable drug target for the pathogen 
Pseudomonas aeruginosa an in silico comparative analysis of the metabolic 
pathways between the pathogen and the host Homo sapiens was performed. 
Detection of bacterial genes that are non-homologous to human genes, and are 
essential for the survival of the pathogen represents a promising means of 
identifying novel drug targets. Metabolic pathways for the pathogen and 
H.sapiens were obtained from the metabolic pathway database KEGG and were 
compared to identify unique pathways present only in the pathogen and absent 
in the host. We identified 361 enzymes from both unique and common 
pathways between the pathogen and the host of which 50 belong to the 12 
unique pathways. Enzymes from both genomes were subject to a BLASTp 
search and sequences homologous to human were removed as non essential. 
P.aeruginosa targets without human homologs were identified when the e-value 
threshold was set as 10-2. Of the 214 targets that had no hits only 30 targets 
belong to unique pathways. These 30 targets were then compared with the list 
of candidate essential genes identified by mutagenesis. Only 8 targets matched 
with the essential genes list and these were considered as potential drug targets. 
We have built homology model for the four target genes lpxC, kdsA, kdsB and 
waaG using MODELLER software. This approach enables rapid potential drug 
target identification, thereby greatly facilitating the search for new antibiotics.  

Keywords: Pseudomonas aeruginosa, Homo sapiens, Comparative microbial 
genomics, KEGG, Homology, MODELLER, kdsA, kdsB, waaG, lpxC, 
Potential drug targets. 

1   Introduction 

Pseudomonas aeruginosa is a Gram-negative bacterium and an opportunistic human 
pathogen as well as an opportunistic pathogen for plants. It mainly target 
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immunocompromised patients and typically infects the pulmonary tract, urinary tract 
and even causes blood infections. P. aeruginosa is highly resistant to a wide range of 
antibiotics and disinfectants [23]. The pathogen has been reported to have lower outer 
membrane permeability to small molecules [10]. There is also the presence of several 
multidrug efflux pumps from the major facilitator superfamily (MFS), multidrug and 
toxic compound extrusion (MATE) families, ATP-binding cassette (ABC) and small 
multi-drug resistance (SMR) that have increased its intrinsic resistance to many 
efficient antibiotics. Thus, developing new antibacterial drugs against this pathogen 
has been a challenging problem over these years.  

Over the last decade, complete genome sequences of several pathogenic bacteria 
have been sequenced and many more such projects are currently under investigation. 
This global effort has focused primarily on pathogens which encompass the majority of 
all genome projects, and has generated a large amount of raw material for in silico 
analysis. These data pose a major challenge in the post-genomic era, i. e. to fully exploit 
this treasure trove for the identification and characterization of virulent factors in these 
pathogens, and to identify novel putative targets for therapeutic intervention [16].  

Genomics can be applied to evaluate the suitability of potential targets using two 
criteria, i. e. "essentiality" and "selectivity" [19]. The target must be essential for the 
growth, replication, viability or survival of the microorganism, i. e. encoded by genes 
critical for pathogenic life-stages. The microbial target for treatment should not have 
any well-conserved homolog in the host, in order to address cytotoxicity issues. This 
can help to avoid expensive dead-ends when a lead target is identified and 
investigated in great detail only to discover at a later stage that all its inhibitors are 
invariably toxic to the host. Genes that are conserved in different genomes often turn 
out to be essential [7] [25] [12] [11]. A gene is deemed to be essential if the cell 
cannot tolerate its inactivation by mutation, and its status is confirmed using 
conditional lethal mutants.  

The complete genome sequence of the pathogen Pseudomonas aeruginosa [23] and 
the host Homo sapiens [The Genome International Consortium, 2001] is available. 
Pseudomonas aeruginosa PA01 strain is the largest bacterial genome sequenced with 
6.3 million base pairs and with 5,570 predicted open reading frames (ORFs). 
Comparative analysis between the two genomes has led to know about the 
pathogenicity of the bacterium and offers to identify new novel antimicrobial drug 
targets. Galperin and Koonin, 1999 suggested that targets that serve as inhibitors of 
certain bacterial enzymes and specific to bacteria can be developed as potential drug 
targets. Comparative metabolic pathway analysis results in the identification of 
unique pathways and enzymes that are present in the pathogen but absent in the host. 
Our approach by differential genome analysis identified bacterial genes that are non-
homologous to human and thus making them attractive targets for new frontline 
antibiotics. Our in silico approach enabled us to identify suitable targets from the 
pathogen resulting in homology modeling of these targets and further analysis using 
molecular docking studies. 

As a proof of concept, many of the genes identified by our approach are also 
reported as essential by experimental methods. Of the 30 distinct targets belonging to 
the unique pathways of P.aeruginosa the experimentally determined candidate 
essential genes generated by Jacobs et al., 2003 listed out only 8 targets as the most 
essential ones. By further analyses of these genes with PDB structures only 3 were 
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selected as the most suitable antibacterial drug targets. Using homology modeling, a 
target sequence can be modeled with reasonable accuracy with the template sequence 
based on the sequence similarity between them. Our approach was successful in 
modeling 4 potential drug targets enabling us further validation and characterization 
in the laboratory in near future.  

2   Materials and Methods 

2.1   Identification of Unique Enzymes as Drug Targets 

Metabolic pathway information was obtained from the pathway database Kyoto 
Encyclopedia of Genes and Genomes [9]. Enzyme commission numbers (EC) of the 
pathogen P.aeruginosa and the host H.sapiens were extracted from the KEGG 
database. Pathways unique to P. aeruginosa were filtered out. Twelve unique 
pathways were observed [Table 1]. These are the pathways that do not appear in the 
host (H. sapiens) but are present in the pathogen. We further identified unique 
enzymes among shared pathways under carbohydrate metabolism, energy 
metabolism, lipid metabolism, nucleotide metabolism, amino acid metabolism, glycan 
biosynthesis and metabolism and metabolism of cofactors and vitamins were obtained 
from the KEGG database. A total of 361 enzymes that are present in P. aeruginosa 
but absent in H. sapiens were obtained and their corresponding protein sequences 
were retrieved from the KEGG database.  

The protein sequences for these 361 unique enzymes were retrieved and were 
subject to BLAST [1] search against human protein sequences database at an 
expectation E-value cutoff of 10-2 to identify non-homologous genes in P. aeruginosa. 
Removing enzymes from the pathogen that share a similarity with the host protein 
ensures that the targets have nothing in common with the host proteins, thereby, 
eliminating undesired host protein-drug interactions. The above search resulted in 214 
enzymes that had “no hits” in BLAST search. Thirty of these 214 “no hits” belonged 
to the unique pathways set and the remaining 184 belong to unique enzymes in shared 
pathways. 

Table 1. Pathways unique to Pseudomonas aeruginosa 

S.No Pathways and their enzymes  Gene EC # 
1 Polyketide sugar unit biosynthesis 

 Glucose 1-phosphate thymidylyltransfease rmlA 2.7.7.24 
 dTDP-D-Glucose 4,6 dehydratase rmlB 4.2.1.46 
 dTDP-4-dehydrorhamnose 3,5 epimerease rmlC 5.1.3.13 
 dTDP-4-dehydrorhamnose reductase rmlD 1.1.1.133 
2 Biosynthesis of siderophore group nonribosomal peptides 
 Isochorismate synthase pchA 5.4.4.2 
 Isochorismate pyruvate lyase pchB 4.1.99.- 
3 Toluene and xylene degradation 
 catechol 1,2-dioxygenase  catA 1.13.11.1  
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Table 1. (continued) 

4 1,2 Dichloroethane degradation 
 Quinoprotein alcohol dehydrogenase  exaA 1.1.99.8 
 Probable aldehyde dehydrogenase   1.2.1.3 
5 Type II secretion system 
 Two-component sensor PilS  pilS 2.7.3.- 
 Leader peptidase (prepilin peptidase) / N-methyltransferase pilD 3.4.23.43 
 Methyltransferase PilK  pilK 2.1.1.80 
6 Type III secretion system 
 Flagellum-specific ATP synthase FliI  fliI 3.6.3.14 
7 Phosphotransfease system (PTS) 
     phosphotransferase system, fructose-specific IIBC component fruA 2.7.1.69 
 probable phosphotransferase system enzyme I   2.7.3.9 
8 Bacterial Chemotaxis 
 Methyltransferase PilK  pilK 2.1.1.80 
 Two-component sensor PilS  pilS 2.7.3.- 
 probable methylesterase   **3.1.1.61 
9 Flagellar Assembly 
 ATP synthase in type III secretion system   3.6.3.14 
10 D-Alanine metabolism  
 D-alanine-D-alanine ligase A  ddlA 6.3.2.4 
 biosynthetic alanine racemase  alr 5.1.1.1 
11 Lipopolysaccharide Biosynthesis 
 Probable glucosyltransferases  2.4.- 
 3-deoxy-manno-octulosonate cytidylyltransferase  kdsB **2.7.7.38 
 Putative 3-deoxy-D-manno-octulosonate 8-phosphate phosphatase  3.1.3.45 
 Tetraacyldisaccharide 4'-kinase  lpxK **2.7.1.130 
 Lipid A-disaccharide synthase  lpxB **2.4.1.182 
 Lipopolysaccharide core biosynthesis protein WaaP  waaP **2.7.-.- 
 Poly(3-hydroxyalkanoic acid) synthase 1  phaC1 2.3.1.- 
 UDP-glucose:(heptosyl) LPS alpha 1,3-glucosyltransferase WaaG waaG **2.4.1.- 
 UDP-2,3-diacylglucosamine hydrolase   **3.6.1.- 
 UDP-3-O-acyl-N-acetylglucosamine deacetylase  lpxC 3.5.1.- 
 UDP-N-acetylglucosamine acyltransferase  lpxA 2.3.1.129 
 ADP-L-glycero-D-mannoheptose 6-epimerase  rfaD 5.1.3.20 
 2-dehydro-3-deoxyphosphooctonate aldolase (KDO 8-P synthase) kdsA **2.5.1.55 
12 Two component system 
 Two-component sensor PilS  pilS 2.7.3.- 

Probable 2-(5''-triphosphoribosyl)-3'-dephospho 
coenzyme-A synthase  2.7.8.25 

 Serine protease MucD precursor  mucD 3.4.21.- 
 Probable acyl-CoA thiolase   2.3.1.9 
 Glutamine synthetase  glnA 6.3.1.2 
 Citrate lyase beta chain   4.1.3.6 

 Protein-PII uridylyltransferase  glnD 2.7.7.59 
 Beta-lactamase precursor  ampC 3.5.2.6 
 Anthranilate synthase component II  trpG 4.1.3.27 
 Anthranilate phosphoribosyltransferase  trpD 2.4.2.18 
 Indole-3-glycerol-phosphate synthase  trpC 4.1.1.48 
 Tryptophan synthase alpha chain  tr 4.2.1.20 
 Potassium-transporting ATPase kd 3.6.3.12 
 Probable methylesterase   3.1.1.61 
 Alkaline phosphatase  phoA 3.1.3.1 
 Respiratory nitrate reductase alpha chain  narG 1.7.99.4  

** Enzymes that matched with list of candidate essential genes and were considered as 
potential drug targets. 
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2.2   Comparison of Unique Enzymes to Essential Gene Data 

We further compared the 214 unique enzymes to the list of candidate essential 
genes of P.aeruginosa obtained from transposon mutagenesis studies [8]. It is 
observed that 83 enzymes in total (8 enzymes from unique pathways and 75 
enzymes from shared pathways) are reported as essential [8]. It is noteworthy that 
7 of the 8 enzymes from the unique pathways map to a single pathway that of 
lipopolysaccharide biosynthesis [Table 2]. Literature search revealed that LpxC 
(UDP-3-O-acyl-N-acetylglucosamine deacetylase) is another enzyme in 
lipopolysaccharide biosynthesis that is essential but is absent in the transposon 
mutagenesis data. Our selection of LpxC for further analyses was based on the 
concept that molecular validation of this enzyme could act as a target for novel 
antibacterial drugs in Pseudomonas aeruginosa [10].   

2.3   Comparative Homology Modeling 

Annotation screen for the 8 enzymes in unique pathways revealed that one of the 
enzymes is reported as a conserved hypothetical protein and another one as probable 
methylesterase. We removed these two proteins for homology modeling. The remaining 
6 enzymes from the unique pathways were subject to BLASTp search against PDB. We 
further removed 3 enzymes that had “no hits” in PDB or had short template sequences 
and thus modeling is not possible. The final potential drug targets are kdsA (2-dehydro-
3-deoxyphosphooctonate aldolase), kdsB (3-deoxy-manno-octulosonate cytidylyl  
 

Table 2. Potential eight drug targets obtained from unique pathways after comparison with the 
list of candidate essential genes for P.aeruginosa [8].The targets which were considered for 
homology modeling are shaded grey in colour. 

 
         ** Enzyme belonging to bacterial chemotaxis pathway. All other remaining enzymes  

    belong to the lipopolysaccharide biosynthesis pathway.     
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transferase), waaG (“UDP-glucose: (heptosyl) LPS alpha 1,3- glucosyltransferase 
WaaG”) and lpxC (UDP-3-O-acyl-N-acetylglucosamine deacetylase).  

A homology 3D model was built for the four potential drug targets kdsA, kdsB, 
waaG and lpxC [Figure 1] using MODELLER program [20]. The structural 
homologues from PDB were used as templates for building the 3D models for the 
four potential targets. All the selected templates had identity of more than 35% with 
the target protein and had a resolution of <3.0Å. The structural homologue used as 
template for kdsA is 2-dehydro-3-deoxyphosphooctonate aldolase (68% identity) 
from Escherichia coli with PDB identifier 1G7U [2], kdsB is 3-deoxy-manno-
octulosonate cytidylyltransferase (53% identity) from Haemophilus influenzae with 
PDB identifier 1VIC [3], waaG is a synthetic construct with PDB identifier 
2CMU[18] with 41% identity and lpxC is UDP-3-O-acyl-N-acetylglucosamine 
deacetylase from Aquifex aeolicus with PDB identifier 1P42 [26] with 36% sequence 
identity. The stereo chemical quality of the modeled protein structures was assessed  
 

 

Fig. 1. Models generated by DeepView. Ribbon representation of the following 3D models a) 
LpxC, b) KdsA, c) KdsB and d) WaaG. 
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a            b  

    
                                                                                 

    c      d  

    

Fig. 2. Ramachandran plot for the following models a) LpxC, b) KdsA, c) KdsB and d) WaaG 

by Ramachandran plot (φ vs ψ) for all the 4 models generated using the  
Ramachandran plot server [22] [Figure 2]. The quality of the model was validated  
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with the PROCHECK program [13] and the main chain parameters for the model 
were tabulated [Table 3].  

 
a) Ramachandran plot statistics for the LpxC model 
 
Fully Allowed Region (244 residues)  : 81.06 %  
Additionally Allowed Region (42 residues) : 13.95 % 
Generously Allowed Region (6 residues)    :    1.99 % 
Outside region (9 residues)    :   2.99 % 
                 ---------- 
     Total              100.00 % 
                 ---------- 
 

b) Ramachandran plot statistics for the KdsA model 
 
Fully Allowed Region (201 residues)  : 72.04 %  
Additionally Allowed Region (49 residues) : 17.56 % 
Generously Allowed Region (20 residues) :    7.17 % 
Outside region (9 residues)    :   3.23 % 
                 ---------- 
     Total               100.00 % 
                 ---------- 
 
c) Ramachandran plot statistics for the KdsB model 
 
Fully Allowed Region (222 residues)  : 88.10 %  
Additionally Allowed Region (22 residues) :   8.73 % 
Generously Allowed Region (6 residues)  :    2.38 % 
Outside region (2 residues)    :   0.79 % 
                 ---------- 
     Total                  100.00 % 
                 ---------- 
 
d) Ramachandran plot statistics for the WaaG model 
 
Fully Allowed Region (300 residues)  : 80.06 %  
Additionally Allowed Region (55 residues) : 14.82 % 
Generously Allowed Region (10 residues) :    2.70 % 
Outside region (6 residues)    :   1.62 % 
                 ---------- 
     Total                  100.00 % 
                 ---------- 
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Table 3. Main Chain Parameters 

a. LpxC 

 
 

    b. KdsA 

 
 

   c. KdsB 

 
 

   d. WaaG 

 
  Main- chain parameters for four models generated by PROCHECK. A- Fully Allowed Region,  
  B- Additionally Allowed Region, L-Generously Allowed Region. 
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3   Results and Discussion 

The impact of microbial genomics on drug discovery has led to the identification of 
new novel antibacterial drugs. Enzymes mediate the synthesis of many complex 
molecules from simpler ones in a series of chemical reactions. Targeting enzymes 
present in the pathogen but absent in the host will make sure the elimination of 
pseudo drug targets in the pathways. It is therefore essential to identify unique 
pathways and target only those unique enzymes and thus narrowing down to few 
potential drug targets. 

3.1   Pathways and Enzymes Unique to P.aeruginosa When Compared to 
H.sapiens  

Metabolic pathways belonging to the pathogen and the host were compared and 
pathways that are present in the pathogen but not in the host are considered to be 
unique pathways whose enzymes are suitable antibacterial drug targets. Comparative 
metabolic pathway analysis resulted in 12 unique pathways:  Polyketide sugar unit 
biosynthesis, biosynthesis of siderophore group non-ribosomal peptides, toluene and 
xylene degradation, D-alanine metabolism, type II secretion system, type III secretion 
system, phosphotransferase system, bacterial chemotaxis, flagellar assembly, 
lipopolysaccharide biosynthesis, 2-component system and 1,2 dichloroethane 
degradation [Table 1]. Enzymes of these pathways are specific and hence they can be 
explored by finding suitable inhibitors against them. 

Among these pathways, lipopolysaccharide biosynthesis, polyketide sugar unit 
biosynthesis, biosynthesis of siderophore group non-ribosomal peptides, 
phosphotransferase system (membrane transporter) and D- alanine metabolism are 
considered to be essential pathways whose enzymes can be targeted for novel 
antimicrobial drugs [10] [6]. We therefore elaborate on the unique enzymes in these 
pathways and investigate the lipopolysaccharide pathway in detail.  

Polyketides are secondary metabolites playing an important role in defence and 
intercellular communication. Polymerization of acetyl and propionyl subunits results 
in the formation of polyketides. Polyketides have important biological activities and 
pharmacological properties and hence targeting enzymes of these pathways would be 
an ideal one for drug discovery. Enzymes of this pathway RmlA (EC 2.7.7.24), RmlB 
(EC 4.2.1.46), RmlC (EC 5.1.3.13) and RmlD (EC 1.1.1.133) synthesize deoxy-
thymidine di-phosphate (dTDP)-L-rhamnose from dTTP and glucose-1-phosphate and 
are important targets for the development of new antimicrobial drugs [14]. Cell wall 
is necessary for viability and hence they are attractive targets with new drugs being 
developed for inhibition of cell wall synthesis.  

Iron chelating compounds secreted by microorganisms are called Siderophores. 
These are nonribosomal peptides and they help in dissolving Fe3+ ions as soluble 
Fe3+ complexes that can be taken up by active transport mechanism. Pseudomonas B 
10 produces a siderophore namely pseudobactin. Nonribosomal peptides are 
synthesized by specialized nonribosomal peptide-synthetase (NRPS) enzymes and 
this biosynthesis is in similar with that of polyketide and fatty acid biosynthesis. 
Enzymes pchB (Isochorismate pyruvate-lyase EC 4.1.99.-) and pchA (Isochorismate 
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synthase EC 5.4.4.2) are the two target enzymes of this pathway catalyzing the 
salicylate biosynthesis [4] [21].         

Recent studies reveal that pathogens depend on their hosts for nutrients and hence 
transport of substrates and other products becomes essential thus making bacterial 
transport proteins as potential drug targets [6]. PTS or Phosphotransferase system is 
involved in transporting many sugars into pathogen and involves enzymes of the plasma 
membrane and the cytoplasm making it a multicomponent system. Protein-N (pi)-
phosphohistidine--sugar phosphotransferase (EC 2.7.1.69) belongs to enzyme II of 
phosphotransferase system with a phosphocarrier protein substrate of low molecular 
mass (9.5 kDa). The other enzyme that has no human homologue is Phosphoenol-
pyruvate—protein phosphotransferase (EC 2.7.3.9) which can also serve as a suitable 
drug target [5]. The presence of many multidrug efflux pumps increases antibiotic 
resistance and hence prevents the antibiotic action. It therefore becomes necessary to 
inhibit these efflux pumps enabling the transport of antibiotic molecules [17]. 

Enzymes D-alanine-D-alanine ligase A (‘ddlA’ EC 6.3.2.4) and alanine racemase 
(‘alr’ EC 5.1.1.1) catalyze the alanine biosynthesis. Alanine is a non-essential α-
amino acid and exists as two enantiomers L-form and D-form. D-alanine mainly 
exists in bacterial cell walls and serves as a precursor for peptidoglycan biosynthesis. 
The catalytic action of enzymes alanine racemases makes L-form get racemized to its 
D-form. These two enzymes are rarely present in eukaryotes and hence they can be 
developed as suitable drug targets [24].  

3.1.1   Lipopolysaccharide Biosynthesis  
P.aeruginosa is a gram-negative bacterium producing lipopolysaccharide, a major 
constituent of the outer cell membrane. Lipopolysaccharide (LPS) serves as selectively 
permeable membrane for organic molecules and also increases the negative charge of 
the cell wall and stabilizes the overall membrane structure. LPS consist of a 
polysaccharide chain covalently linked to a lipid moiety, known as lipid A. 
Lipopolysaccharide has an important role in the structural integrity of the bacteria and 
its defense against the host and hence the pathways of these enzymes are attractive drug 
targets.  The enzymes of this pathway had no human homologues and hence they served 
as potential targets. A total of thirteen enzymes formed this pathway of which seven 
enzymes matched with the list of candidate essential genes obtained by transposon 
mutagenesis study and four of them lpxC, kdsA, kdsB and waaG were selected for 
homology modeling LpxC, KdsA, KdsB and WaaG [Figure 1]. 

3.2   Targets from Pathways Common to Both P.aeruginosa and H.sapiens     

Unique enzymes in common pathways between H.sapiens and P.aeruginosa present 
another source for exploration of drug targets. These targets may be responsible for 
the pathogenicity and other important biological functions of P.aeruginosa. Though 
our approach concentrated mainly on those enzymes present in the unique pathways 
we also investigated to find potential targets from the common pathways. There are 
about 84 targets in carbohydrate metabolism, 30 targets in energy metabolism, 14 
targets in lipid metabolism, 31 targets in nucleotide metabolism, 122 targets in amino 
acid metabolism, 65 targets from metabolism of cofactors and vitamins and 10 targets 
from secondary metabolite biosynthesis [Figure 3]. It must be noted that several 
targets were functional in more than one pathway. 
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Graphical representation of various metabolic pathways in P.aeruginosa
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Fig. 3. Metabolic pathways in P.aeruginosa 

Amino acid metabolism consists of maximum number of targets since amino acids, 
as precursors of proteins, are essential to all organisms [15]. Many of the enzymes are 
involved in the biosynthesis of glutamate, lysine, arginine and many other amino acid 
biosynthesis. Lipid metabolism consists of enzymes that function for lipid 
biosynthesis as well as for lipid degradation. Many virulence factors including 
phospholipases C, toxins, lipases and proteases are secreted by P.aeruginosa. Outer 
membrane proteins and membrane transporters are important drug targets in this 
pathogen due to their involvement in transport of antibiotics. Targets responsible for 
adhesion and motility are also of great interest in drug targeting. 

Many multi-drug efflux systems are present in P.aeruginosa thus preventing the 
action of effective antibiotics. Thus targeting those genes responsible for inhibition of 
action of antibiotics would prevent the drug resistance property of this pathogen. This 
example thus illustrates the use of this approach to identify essential genes in 
pathogens that may be considered as drug targets with more confidence. 

4   Conclusion 

Our in silico approach of comparative metabolic pathway analysis resulted in the 
identification of potential drug targets. For the first time, the availability of complete 
genome sequences of many bacterial species is facilitating many computational 
approaches. The complete definition of all gene products by gene identification tools 
exemplified here is just the first step. The data presented here demonstrates that 
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stepwise prioritization of genome open reading frames using simple biological criteria 
can be an effective way of rapidly reducing the number of genes of interest to an 
experimentally manageable number. This process is an efficient way for enriching 
potential target genes, and for identifying those that are critical for normal cell 
function. The generation of a comprehensive essential gene list will allow an 
accelerated genetic dissection of traits such as metabolic flexibility and inherent drug 
resistance that render P. aeruginosa such a tenacious pathogen. Such a strategy will 
enable us to locate critical pathways and steps in pathogenesis; to target these steps by 
designing new drugs; and to inhibit the infectious agent of interest with new 
antimicrobial agents.  
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Abstract. Peptidebinding toHLAmolecules is a critical step in induction
and regulation of T-cell mediated immune responses. Because of combina-
torial complexity of immune responses, systematic studies require
combination of computational methods and experimentation. Most of
available computational predictions are based on discriminating binders
from non-binders based on use of suitable prediction thresholds. We com-
pared four state-of-the-art binding affinity prediction models and found
that nonlinearmodels showbetter performance than linearmodels. A com-
prehensive analysis of HLA binders (A*0101, A*0201, A*0301, A*1101,
A*2402, B*0702, B*0801 and B*1501) showed that non-linear predictors
predict peptide binding affinity with high accuracy. The analysis of known
T-cell epitopes of survivin and known HIV T-cell epitopes showed lack of
correlationbetweenbindingaffinityand immunogenicityofHLA-presented
peptides. T-cell epitopes, therefore, can not be directly determined from
binding affinities by simple selection of the highest affinity binders.

1 Introduction

Major histocompatibility complex (MHC) molecules present peptides, derived
from antigens and host proteins, on the cell surface. The recognition of
presented peptides by TCD8+ cells is necessary for recognition of infected or
pathologically mutated cells and induction of cellular immune responses and sub-
sequent elimination of tumors and infected cells. Human MHC is known as the
human leukocyte antigen (HLA). Antigen processing and presentation involves
primarily three steps: proteasomal cleavage, translocation of cleaved fragments
by transporter associated with antigen processing, and HLA-peptide binding.
The HLA/peptide binding is by far the most discriminative step: natural preva-
lence of HLA-binding peptides is in the range of 0.1-5% for any given protein
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of which some 20% remain functionally relevant [1,2]. Therefore, computational
prediction and modeling of HLA/peptide binding can greatly facilitate peptide
screening, with tremendous savings in time and experimental effort.

The HLA peptide binding prediction can be approached as simple classifi-
cation problem of discriminating binders from non-binders. However, peptide
binding is necessary but it does not guarantee an immune response. A binding
affinity metric like inhibition concentration (IC50) of a standard probe quanti-
fies HLA/peptide binding. Given a large number of binding data recently made
available [3] we have extended the approach by studying peptide binding as a
regression problem.

Many different attempts have been made to predict MHC peptide binding.
There are primarily three approaches: by structure modelling, data-driven using
peptide sequences and their binding affinities, or by the combination thereof.
Sequence-based approaches can be further categorized into motif/profile based
methods [4,5,6,7,8,9] and machine learning methods which use Artificial Neural
Networks (ANN) [10,11], Hidden Markov Models (HMM) [12], or Support Vector
Machines (SVM) [13,14,15,16,17,18,19]. An example of combined method is the
adaptive double threading [20]. The prediction methods have been compared for
accuracy of classification (binders vs. non-binders) [3,21,22]. However different
data sets are used to build models and evaluation data vary between different
studies making it intrinsically difficult to compare predictor performance.

Recently, a comprehensive experimental relative binding affinity analysis of a
complete overlapping peptide library derived from the tumor-associated antigen
survivin [23] was reported for eight different types of HLA class I molecules. Also,
a large data set of peptide binding affinities became available at the Immune
Epitope Database and Analysis Resource (IEDB, www.immuneepitope.org) [3].
Combining these two data sets, we analysed the factors that affect accuracy of
prediction models and explored the correlation of peptide binding and immuno-
genicity. The results of this study provide an improved understanding of the
prediction systems design issues and their use for identification of HLA-binding
peptides and T-cell epitopes.

2 Materials and Methods

Four different prediction methods were used in this study. Support Vector Re-
gression (SVR) and epitope information were used to build a regression model
to predict HLA-peptide binding affinities using the first of the data sets. The
three models used at IEDB, namely ANN and two matrix methods were used
as comparison predictors. We defined prediction performance criteria to enable
fair comparisons between models. Specifically, we used match curve area and
correlation coefficient to compare model performance.

2.1 Datasets

Survivin, a member of the apoptosis inhibitor protein family, is one of a lim-
ited number of shared tumor-associated antigens that is over-expressed in the
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majority of human cancers. There is an intense interest in using survivin as a tar-
get for therapeutic CTL response. Bachinsky et al. [23] used a high-throughput
technique to identify peptides derived from survivin that bind eight HLA class I
alleles: HLA-A*0101, HLA-A*0201, HLA-A*0301, HLA-A*2402, HLA-A*1101,
HLA-B*0702, HLA-B*0801, HLA-B*1501. A library of 134 overlapping non-
amers spanning the full length of the survivin protein (UniProt O15392 with
142 amino acids) was experimentally screened for peptides capable of binding
each allele. Binding to each allele was reported as a percentage relative to a
positive control peptide for that allele as values from 0 to >100%. An arbi-
trary cutoff of 30% of the control was used as a positive cutoff for experimental
binders. Therewith, they identified nineteen HLA-A*0201, zero HLA-A*0101,
seven HLA-A*0301, twelve HLA-A*1101, twenty-four HLA-A*2402, six HLA-
B*0702, six HLA-B*0801 and eight HLA-B*1501 binding peptides.

Friedrichs et al. [24] collected a set of survivin-derived peptides, which can
induce HLA restricted CTL responses. Two peptides reported as survivin-derived
nonamer T-cell epitopes are HLA-A*0201 restricted 96LTLGEFLKL104 and A*
2402 restricted 20STFKNWPFL28.

Another set of proteins that has been comprehensively studied in T-cell re-
sponses are HIV proteins. We analyzed all HIV protein T-cell epitopes avail-
able in the HIV molecular immunology database (www.hiv.lanl.gov/content /im-
munology). In addition, we analysed mutations of a small set of HLA-restricted
CD8+ T-cell epitopes.

Peters et al. [3] have made public a set of 48,828 quantitative peptide-binding
affinity measurements relating to 48 different mammalian MHC class I alleles.
They used this data to establish a set of predictions with one neural network
method (IEDB ANN) and two matrix-based prediction methods (IEDB SMM
and IEDB ARB) and compared them with other available online predictors.
In this study, we only used eight nonamer datasets of the eight HLA alleles
of interest in this study. The data set (which we denote as the IEDB data set)
was downloaded from (mhcbindingpredictions.immuneepitope.org).The datasets
used in this study were: A*0101 (1157 peptides), A*0201 (3089), A*0301 (2094),
A*1101 (1985), A*2402 (197), B*0702 (1262), B*0801 (708), and B*1501 (978).

2.2 SVM Regression Model and Peptide Coding Using Extra
Epitope Information

The SVM is firmly based on statistical learning theory. It can be used to solve
both classification and regression problems by optimizing given generalization
bounds. Its regression form (SVR) is based on a loss function that ignores errors
within a certain distance of the true value (we use the ε-insensitive loss function).
In SVMs data is implicitly projected into a high-dimensional feature space using
a kernel function. We employed the Gaussian kernel, K(x, z) = exp(−||x −
z||2/σ2), where x and z are two samples and σ is a kernel parameter. The
Gaussian kernel requires peptides to be represented as numerical vectors. A
sparse orthogonal coding was used to represent peptides, with each amino acid
encoded by 20 bits (19 bits set to zero and 1 bit set to one). Hence, a nonamer is
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represented in a 180-dimensional space. The coding vector was extended by nine
positions encoding the shape of the binding motif for each studied allele. The
final coded peptide vector had 189 elements and we refer to it as the extended
sparse coding.

2.3 IEDB Prediction Models

IEDB ANN, SMM and ARB prediction models are used by IEDB website and all
three methods predict the quantitative binding affinity. The ANN is a nonlinear
model and the other two generate scoring matrices. They have been used as
benchmarking predictions [3] and we compared the SVR model performance
with them.

2.4 Performance Evaluation Methods

To compare two classifiers discriminating binders vs. non-binders, area under
ROC (Receiver operating characteristic curve; the AUC value) compares overall
performance of classifiers and does not require a decision threshold to be de-
termined. For regression, the correlation coefficient between predicted and true
binding affinities were used. To assess potential epitopes/binders along protein
sequences, we used “match curve” plots of the number of true binders in the
top N ranked predicted affinities (y-axis) vs. N (x-axis). If most of true epitopes
can be found within a short list of top ranked predicted binders, the prediction
system is very useful for screening epitopes along protein sequences.

3 Study Design

This study has three parts designed to understand prediction systems for HLA-
binding peptides, the relationship between binding affinities and known T-cell
epitopes for survivin and selected HIV proteins, and the relationship of natural
epitopes and their mutants.

3.1 SVR HLA-Binding Predictor

The Gaussian kernel and the extended sparse coding SVR were combined with
the IEDB datasets to build a regression model for binding affinity prediction for
each HLA allele. Since vast majority of IC50 values from the IEDB database for
the eight HLA alleles are within 1 to 50,000 nM, we transformed the binding
affinities to the range of 0 and 1 by using 1 − log(binding affinity)/ log(50000)
as described in [25].

The model building was done using single-level five-fold cross-validation for
each allele. We used the test data in each run to tune regularization and ker-
nel parameters. We got five different regression models from the cross-validation
process. We repeated the five-fold cross-validation five times. Regression perfor-
mance was reported as the mean value of correlation coefficients from the five
runs. In addition, we chose the models from a single cross-validation run which



Understanding Prediction Systems for HLA-Binding Peptides 341

gave the best cross-validation performance. These five regression models were
used as a committee for the corresponding single allele to get predicted binding
affinity values for all yet unseen peptides.

3.2 Prediction of HLA-Binding Peptides in Survivin Protein

The comprehensive experimental relative binding affinity analysis of the com-
plete survivin peptide set presented an opportunity to evaluate how different
predictive models perform against an independent data set representing a com-
plete protein. We applied our regression model on the survivin dataset and re-
trieved prediction results from the IEDB prediction servers to compare their
performances. Comparison was based on the correlation coefficient calculated
from the predicted binding affinities and the experimentally measured relative
binding affinities.

3.3 Prediction of T-Cell Epitopes on HIV Proteins and Survivin
Protein

We used the SVR model to predict binding affinities for known T-cell epitopes
on HIV proteins and survivin within the eight alleles. When a known epitope is
longer than a nonamer, we took the highest binding affinity of all possible non-
amers within the epitope as its binding affinity. We also did one site mutagenesis
on eight T-cell epitopes of HIV proteins and survivin in order to compare their
affinities to corresponding ascendant epitopes and find mutation patterns.

4 Results

4.1 Cross-Validation Performance on the Eight HLA-Alleles

Table 1 shows the correlation coefficient (with standard deviation) of SVR mod-
els on the eight HLA-alleles using cross-validation. Most of correlation coeffi-
cient performances are satisfactory except for the B*0801 allele. Figure 1 shows
the binding affinity distributions of data sets for HLA-A*0201, A*2402 and
B*0801 and the horizontal line in each subplot denotes the binding affinity value,
log10(500). From the analysis of experimental data from [3], log10(500) was taken
as a threshold for binder and non-binder, which means that for a peptide with
log10(IC50) value less than log10(500) it should be treated as a binder. Although
the threshold, log10(500), is arbitrary, it enables objective separation of binders
from non-binders. From Figure 1, it is clear that there are very few samples
(only 21) with binding affinities less than the threshold versus the total around
700 samples for B*0801 allele. For A*2402 alleles, there are only 197 samples
in total, but the predictor performance is superior to that of B*0801. A possi-
ble explanation is that the dataset is more balanced. For the A*0201 allele the
dataset is slightly unbalanced, however, there are still about 1000 samples with
IC50 values below the binding threshold. This observation holds for other alleles.
More samples with stronger binding affinities seem to imply better prediction
performance.
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Table 1. SVR cross-validation correlation coefficient (r) performance on HLA-alleles

Allele A*0101 A*0201 A*0301 A*1101 A*2402 B*0702 B*0801 B*1501

Size 1157 3089 2094 1985 197 1262 708 978
Mean(r) 0.781 0.847 0.766 0.823 0.669 0.812 0.287 0.726
Std 0.005 0.002 0.004 0.002 0.003 0.004 0.073 0.008
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Fig. 1. Experimental binding affinity plots for A*0201, A*2402 and B*0801 data sets.
The horizontal lines denote the binding affinity values, log10(500).
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ARB and SVR models on the whole survivin dataset
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4.2 Prediction of Binding Affinity along Survivin Protein Sequence

For each of the eight HLA alleles we calculated the correlation coefficient be-
tween experimental binding values and predicted binding affinities. log10(IC50)
values of all nonamers in the survivin sequence were predicted using IEDB
ANN, SMM and ARB prediction tools (tools.immuneepitope.org/analyze/html/
mhc binding.html). Figure 2 illustrates performance differences between models
(HLA-A*2402 ANN method is not available from the IEDB web server). IEDB
ANN is generally superior, followed by SVR. SMM and ARB show similar per-
formance inferior to the other two.

For screening potential epitopes/binders in long protein sequences, it is useful
to look at the match curve to assess how many peptides are typically required
to test to identify all true epitopes/binders. Figure 3 shows the match curves
for the eight alleles using the IEDB ANN and our SVR models using experi-
mental data for survivin peptides. For A*0101 there are no binders according
to the experimental settings in [23] and for A*2402 results for IEDB ANN are
unavailable. The classification performance of ANN and SVR is very similar. For
A*0201, A*0301 and B*0801, SVR is slightly better than the IEDB ANN. Most
of experimentally determined binders are within a few numbers of the predicted
top peptides. The worst performance by this measure is for the A*2402 allele,
where 19 of 23 binders are within predicted top 65 peptides.
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Fig. 3. Match curves for experimentally identified binders on survivin protein

4.3 Predictions of T-Cell Epitopes

Figure 4 displays the predicted binding affinities, log10(IC50), using SVR for
known HIV T-cell epitopes. The upper horizontal line indicates log10(5000) and
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followed by log10(500) and log10(50). In [10], a peptide with log10(IC50) less
than log10(5) is a very good binder; good binder with affinity between log10(5)
and log10(50); intermediate binder between log10(50) and log10(500) and low
affinity binder between log10(500) and log10(5000). In B*1501, all epitopes are
low affinity binders. In B*0801 predictions are not informative, reflecting poor
training set. For other alleles, T-cell epitopes show a broad range of binding
affinities, most of which are between log10(50) and log10(5000) .
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Fig. 4. SVR predicted binding affinities for known HIV T-cell epitopes

We compared the predicted binding affinities with experimental data for
known survivin T-cell epitopes, shown in Table 2. Both known T-cell epitopes
have moderate binding affinity. The 96-104 epitope is the third highest binder
to A*0201 while 20-28 is the second highest binder to A*2402 of all survivin
peptides [23]. Predicted binding affinities are approximately within 2-fold con-
centration of their experimental affinities indicating excellent correlation.

Table 3 shows natural epitopes and their in silico mutant versionswith the high-
est predicted binding affinities. The affinity change varies from 2 to 10 fold. For
A*0201, the mutant happens at the second position from T to M or L; for A*0101,
it is at the ninth position from E to Y; for A*1101, at the seventh position from C
to F; and for A*2402, at the second position from T to Y. This example illustrates

Table 2. Predicted binding affinities (IC50) of known survivin T-cell epitopes

Allele Start End Peptide IC50 Experimental
Name Position Position (SVR) IC50 (from [23])

A*0201 96 104 LTLGEFLKL 893 430 nM
A*2402 20 28 STFKNWPFL 1290 740 nM
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a possible vaccine engineering applications with modified peptides. In a success-
ful case study of immunotherapy with modified survivin 96-104 peptide LMLGE-
FLKL in a liver metasthasis of pancreatic cancer the result was a complete remis-
sion of metasthasis [26]. Table 4 shows in silico mutations of natural HIV epitopes
and their mutants with the highest binding affinities.

Table 3. Mutant epitopes with the highest binding affinities vs. natural epitopes

Allele Natural IC50 Mutant IC50

Name Epitope (SVR) Epitopes (SVR)

A*0101 QFEELTLGE 33144 QFEELTLGY 2443
A*0201 STFKNWPFL 2077 SMFKNWPFL 891
A*0201 LTLGEFLKL 893 LLLGEFLKL 231
A*1101 LAQCFFCFK 21 LAQCFFFFK 3
A*2402 STFKNWPFL 1290 SYFKNWPFL 163

Table 4. Differences between natural HIV epitopes and their mutants resulting in
improved binding affinity

Allele P5 P4 P3 P2 P1 P1′ P2′ P3′ P4′

A*0201 Q → Y W/R → M R → M A → I G → F E → F
G → L/P T → K K → F G → F
L → Q Q → R P → L
Y/F → L Y → L
P/G → V A → Y
I → Y

A*0301 Y → V D → M Q → R C → F
D/Y → L
C → P

A*1101 Y → V Q → R Q → F A → R W → A R → K
T → K Q → V M → A A/T → F

A → Y

A*2402 S → Y R → Y Q → V G → A A/P → F
P → L

B*0702 V → P R → Y G → A G → L
T → L T → K I → K
E/F → M K/W → F

B*0801 D → R V/G → P Y → R Q → R G/Y/V → L
G/P → L C → F

B*1501 P → V Y → R Q → R
D → K

5 Conclusions

IEDB ANN model is the best among the four models, followed by the SVR
model. The predictions by SMM and ARB models are inferior to them. The
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two non-linear methods produced more accurate predictions than two linear
methods. We also found that, provided that training sets are representative, the
more training samples result in a better prediction performance.

IEDB ANN and SVR models performed similarly in scanning potential binders
when tested on survivin sequence. Both true epitopes were within top 2.5% of
predicted binders. Therefore, in silico models can save significant experimental
time and costs in screening potential targets. By analyzing predicted binding
affinities of known HIV T-cell epitopes, we found that the range of binding
affinities varies for different alleles; and the range of binding affinities include
high, moderate, and low affinity. Most of the survivin epitopes are intermediate
affinity binders compared to their one-site mutated descendants, some of which
are high-affinity binders. The change of IC50 varies from 2 to 10 fold for mutated
epitopes and most of them were at epitope anchors or auxiliary anchors. These
phenomena indicate that high binding affinity binding and immunogenicity are
not necessary correlated.

6 Discussion

Binding affinity alone is not sufficient to describe the interaction between HLA
allele molecules and peptides. Other factors like dissociation rate or stability
of each complex are also the determinants of the interaction. Classification of
interaction into binders and non-binders only is not informative of immunogenic
properties of peptides. Known survivin-derived T-cell epitopes are low affinity
binders to their respective HLA molecules.

Most of its known T-cell epitopes of tumor antigen survivin are low affinity
binders, which might offer an explanation for lack of response to antigens in
cancer patients, self-tolerance, and subdominance [23]. It is unclear which epi-
topes within a given tumor-associated antigen should be selected to circumvent
tolerance and hence serve as the best target in anti-tumor vaccination. One chal-
lenge for vaccine design is to enhance the immunogenicity of weak antigens and
prevent silencing of active T-cell clones. One possible strategy is to optimize
tumor-associated antigen epitope analogs for priming. The in silico mutation
analysis demonstrated that the optimization should target mainly anchor or
auxiliary anchor positions.
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Abstract. Identifying antigenic peptides that bind to Major Histocompatibility 
Complex (MHC) molecules plays a central role in determining T-cell epitopes 
suitable as vaccine targets. Prediction of the binding ability of antigenic  
peptides to MHC class II molecules is more complex that for class I. Class II 
molecules bind to peptides of different lengths and the core region that interacts 
with the binding site on the class II MHC molecule is located anywhere within 
the peptide. Obtaining an alignment for these binding sites is an important first 
step in determining the binding motif of MHC class II alleles. In this paper, we 
exploit entropy and evolutionary distance of the key binding positions (anchor  
positions) of an alignment in determining the best possible alignment for a 
given set of peptide data. Once an optimal alignment is found, a weight matrix 
representing the binding motif is estimated. The weight matrix designed is  
subsequently applied to predict MHC binding peptides.  

1   Introduction 

T cells play a key role as the mediators of immune response against diseases. These 
cells recognize viral antigens (short peptides) bound to Major Histocompatibility 
Complex (MHC) molecules through T cell receptors (TCR). Predicting such binding 
peptides assists in selecting epitopes for use in vaccine design. Prediction of MHC 
class II peptide binding is more difficult than that of class I [1]. This is due to the 
open-ended nature of MHC class II peptide binding groove which allows binding to a 
broader range of peptide lengths (approximately 11 to 22aa) [1,2]. While MHC class I 
binds to peptides of a narrow range (usually 8-10 aa), a core of nine aa within a pep-
tide is sufficient to bind to MHC molecules of both classes [3]. However, often, the 
exact location of the binding core (motif) within a peptide longer than nine aa is un-
known. Therefore, given a set of experimentally validated MHC class II binders of 
different length distribution, an accurate alignment of the binding cores must be first 
obtained before a motif can be determined. According to previous studies carried out 
on the structural features of MHC class II molecules indicate five binding sites, also 
known as anchor positions at positions 1,4,6,7 and 9 within a 9-mer peptide [4-6].  

A peptide binding motif is represented either by a consensus sequence or as a 
quantitative matrix [7]. A widely used representation of a motif is the quantitative 
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matrix. Each element in the matrix depicts a weight corresponding to the interaction 
between an amino acid and a position in the motif. Derivation of quantitative matrices 
based on experimentally derived position specific binding profiles is costly and time 
consuming. Hence, such matrices can not be easily updated as with machine-learning 
techniques when new data become available [8]. Other popular computational tools 
available for finding motifs in protein sequences are: MEME [9][23], Gibbs motif 
sampler [10] and Rankpep [11].  

In this study, our aim is to obtain an optimal alignment of the binding cores for 
MHC class II, I-Ab molecule peptide sequence dataset. This is carried out with the 
help of an evolutionary algorithm [12] by simultaneously optimizing the relative en-
tropy and the evolutionary distance of possible alignments. The obtained best align-
ment is then used to derive the quantitative matrix which will subsequently be used to 
predict binding peptides. Relative entropy, a measurement of uncertainty is often used 
to analyze sequence features and alignments, to measure sequence conservation. The 
evolutionary distance is measured using the BLOSUM62 substitution matrix, a matrix 
suitable for modeling evolutionary problems [13]. As anchor positions are known to 
influence peptide-MHC binding, a higher weightage is given to such positions during 
the estimation of evolutionary distance. In order to reduce the sequence redundancy in 
an alignment, we employed sequence clustering followed by sequence weighting. 

2   Materials and Methods 

2.1   Peptide Sequence Dataset 

Peptide sequences and their binding affinities were obtained from SYFPEITHI [4], 
MHCPEP [17], AntiJen [20] and EPIMHC [21] databases. An independent test data-
set was used to evaluate the predictive ability of the I-Ab mouse model. The extracted 
dataset consists of 251 unique binders with a length distribution ranging from 9 to 24 
amino acid residues and 58 non-binders.  Binder set was divided into two sets, train-
ing and test set so that there is no overlap between the two datasets. While training set 
consists of 167 binders, the testing dataset consists of 84 binders and 58 non-binders.  

2.2   Peptide Sequence Clustering and Weighting 

Sequence clustering and weighting is carried out according to [14]. A set of sequences 
with sequence identity greater or equal to 62% forms a cluster. Cluster assignment is 
followed by the sequences weighting. Sequence weighting reduces over-
representation of sequences in an alignment. A peptide s of length k-mer in cluster, c 
is assigned a weight, ws = 1/nc, when n is the number of sequences in cluster c. 

2.3   Pseudo-count  Correction 

Pseudo-count correction is carried out as given in [15], which uses the prior knowl-
edge of amino acid relationships represented by substitution matrices. For a given 
column, pseudo-count frequencies, gal, for amino acid a at position l of the alignment 
are calculated according to the following equation where fbl, qb, and qab represent 
observed frequency of amino acid b in position l, background frequency of amino 
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acid b, and the target frequency implicit in the substitution matrix (the frequency by 
which amino acid a is aligned to amino acid b), respectively. 
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where qa|b is the conditional probability derived from the BLOSUM62 substitution 
matrix. The effective amino acid frequencies were then determined according to [15] 
by applying weight on pseudo-count correction as below: 
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Where α and β represent the effective sequence number and an arbitrary weight on the 
pseudo-count correction, respectively. Let the number of peptide clusters generated be 
C, and the value of α = C – 1. An empirically determined suitable setting for  
β = 10 [15]. 

2.4   Identification of Binding Core of Peptides  

The first step in designing a weight matrix is to obtain an accurate alignment of th 
binding cores that are distributed within experimentally determined binding peptides 
of varying length.  Therefore, our goal here is to identify the starting position of the 
binding core in each peptide. Let S be a set of N peptide sequences, S = {s1,s2,… 
si,…sN}. For a given alignment, let sil denotes the ith peptide whose binding core starts 
at the lth position within the peptide. Let κ = ( k1k2…k9 ) represents the selected best 
nine aa length binding core in a peptide. Once all the starting positions are identified, 
an alignment is obtained for the binding peptides so that the weight matrix can be 
derived. 

    k1 k2 k3 k4 k5 k6 k7 k8 k9  
K P V S K M R M A T P L L M 
              
              
              
              
              
     9-aa Binding Core  

Fig. 1. An illustration of putative 9 aa binding cores within a peptide sequence, si. Highlighted 
positions indicate anchor positions within a putative binding core. 

2.5   Generating an Optimal Alignment 

We use the evolutionary approach described in [12] to optimize two objective func-
tions associated with relative entropy (E) and evolutionary distance (D) of all align-
ments. Each individual in the evolving population represents possible starting  
positions of binding cores within each experimentally determined binding peptide in 
the training dataset. An individual is represented by a concatenated string of starting 
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positions of peptides in an alignment. The bit size for representing each starting posi-
tion is determined as below. Given a peptide of length r, the number of 9-mer pep-
tides that can be derived from r is p=r-9+1. Hence, the starting positions are located 
between 0 and p-1 where each peptide is overlapped by a single amino-acid.  The bit 
size, θ, is chosen such that p < min (2θ) whereby all 9-mer peptide positions in the 
peptide are taken care of. 

Based on the starting positions embedded in an individual, an alignment is gener-
ated for the N peptides. The alignment is then use to estimate D and E for anchor 
positions as given by the Eq. (3) and Eq. (4) below. The evolutionary distance be-
tween two peptide sequences sm and sn at anchor positions κ’ = (k1 k4 k6 k7 k9) of the κ 
binding core in the alignment is calculated as below, where B(.) is the score estimates 
from the BLOSUM62 substitution matrix for sm and sn. Then D is estimated as: 
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Where W is a weighting factor; W=w for j= κ’ and W=1.0 otherwise. 

And E is estimated as: 
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where gaj is the frequency of amino acid a occupying at position j in the alignment, 
g’aj is the frequency of pseudo-count and sequence weight corrected amino acid a at 
position j, and qa is the background frequency of amino acid a. A number of different 
approaches are available for estimating background frequencies, also known as back-
ground model or null model: amino acid distribution in the SWISS-PROT database 
[16], a flat distribution where all amino acid frequencies are equal to 1/20, or an 
amino acid distribution estimated from a non-binder dataset.  

Fitness of an alignment is scored according to Eq.(3) and Eq(4). Best population 
comprises of individuals that maximize Eq.(3) and minimize Eq.(4) simultaneously. 
The alignment, which scored the highest D and lowest E is then used to build the 
weight matrix, M, and subsequently for predicting binders in the testing datasets. 
Each position of the weight matrix, maj is calculated according to the equation given 
below.  
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3   Experiments and Results 

The experiment in determining the weight matrix representation of I-Ab binding motif 
is carried out as follows.  The values for the parameters β in Eq.(2) and w in Eq.(3) 
are chosen as 10.0 and 2.0, respectively. 
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During a single iteration of the evolutionary process, the values of the objective 
functions, D and E are estimated for the resulting alignments embodied in the indi-
viduals. A population of 1000 was evolved for 500 generations with the empirically 
determined values 0.9 and 0.0004 as the crossover and mutation probability. By using 
Eq. (5), the weight matrix, M is built with the best alignment, and subsequently used 
to test the peptides in the testing dataset. A peptide in the testing set is evaluated by 
scoring all possible 9 aa length binders within the peptide against the weight matrix. 
Of all the scores, the highest value obtained is assigned as the binding score of the 
tested peptide. Binding and non-binding status of peptides were determined using a 
threshold. The performance was measured by estimating Area under Receiver Operat-
ing Characteristics (AROC). Let the score estimated for the binding core κ in the 
peptide si be ei. The binding status, binder (b) or non-binder (nb) is determined ac-
cording to a threshold, t, as follows:  

t

t

i
i

i

b if e
v

nb if e

⎧ ⎫≥⎪ ⎪= ⎨ ⎬
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We obtained an ROC curve by evaluating sensitivity and specificity values for 
various thresholds as illustrated in Figure 2. The final AROC value estimated for the 
testing dataset is 0.79, a value considered as good prediction accuracy according to 
[22]. We also compared our results with MEME [23]. The same training dataset was 
submitted to the on-line web server http://meme.sdsc.edu/meme/meme.html, and the 
resulting log-odds matrix was used to measure the prediction accuracy. The AROC 
value estimated for the testing dataset is 0.71. 
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Fig. 2. The ROC plot illustrating the specificity and sensitivity values at different thresholds 

4   Discussion and Future Directions 

A weight matrix representing motif for MHC class II, I-Ab was derived by simultane-
ously optimizing entropy and evolutionary distance. The anchor positions of a puta-
tive binding core were given higher weightage during the calculation of evolutionary 
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distance. In order to reduce the sequence redundancy in an alignment, we employed 
sequence clustering and weighting. The weight matrix developed was subsequently 
applied to discriminate binders from non-binders. The initial results are promising. 
Better predictive accuracy can be envisaged by incorporating structural properties as 
an additional objective function.  Currently we are extending our investigations to-
wards evaluating different background models, predictive accuracy of the proposed 
method on multiple alleles of HLA class I and class II molecules, and determining the 
applicability of multiple substitution matrices. 
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Abstract. Recent advances in bioimaging have allowed to observe
biological phenomena in three dimensions in a precise and automated
fashion. However, the analysis of depth-stacks acquired in fluorescence
microscopy constitutes a challenging task and motivates the develop-
ment of robust methods. Automated computational schemes to process
3D multi-cell images from High Content Screening (HCS) experiments
are part of the next generation methods for drug discovery. Working to-
ward this goal, we propose a fully automated framework which allows fast
segmentation and 3D morphometric analysis of cell nuclei. The method is
based on deformable models called Active Meshes, featuring automated
initialization, robustness to noise, real-time 3D visualization of the ob-
jects during their analysis and precise geometrical shape measurements
thanks to a parametric representation of each object. The framework
has been tested on a low throughput microscope (classically found in
research facilities) and on a fully automated imaging platform (used in
screening facilities). We also propose shape descriptors and evaluate their
robustness and independence on fluorescent beads and on two cell lines.

1 Introduction and Related Efforts

The combination of microscopy and robotics enables to perform 2D visual cell
based experiments in parallel and in a fully automated fashion. As a consequence,
the exponential increase of images to analyze has motivated the development of
fully automated frameworks. However, 2-dimensionality has some limitations,
in particular for objects that are heterogeneous along the depth axis such as
cell nuclei. Much more information can be obtained by acquiring depth-stacks of
images, which allows to analyze the entire 3D structure of cellular or sub-cellular
compartments [1].

The cell nuclear morphology constitutes a good start for such a study. A large
array of biological functions is accompanied by major changes in the geometry
of the nucleus [2]. Determining exactly how geometric characteristics relate to
cellular function requires accurate 3D morphological information.

In addition to quantitative measurements, visual observation is also a key
aspect of scene interpretation and understanding. Yet, visualizing a 3D scene
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during its analysis remains a challenging task. Most methods employ a 3D re-
construction algorithm (e.g. the Marching Cubes [3]) to produce an intuitive
rendering of the scene. These algorithms are time-consuming and suffer from
surface approximation errors, therefore real-time visualization remains an issue.

The analysis of 3D fluorescent stacks is not trivial. Indeed, fluorescent im-
ages generally suffer from many disturbances induced by the imaging protocol
(medium autofluorescence, acquisition noise etc.). However, one of these distur-
bance factors, namely the convolution with the microscope PSF, has a different
impact in 2D and 3D. The PSF is not constant along the depth, and has a much
stronger blurring effect on slices below and over the focus plane, yielding very
fuzzy boundaries along the depth axis (cf. Fig. 1), causing most algorithms to
fail detecting the edges correctly in 3D.

Fig. 1. Axis-based view of a 3D image of size 100 × 115 × 60 pixels and resolution
0.28×0.28×0.5 μm. Center: XY plane view. Right: YZ plane view. Bottom: XZ plane
view. The YZ and XZ planes emphasize the blurring effect of the microscope PSF on
the lower and higher Z planes of the volume.

In this context, deformable models (also known as “active contours”) have
shown to be efficient thanks to their handiness and robustness to noise [4]. The
idea is to deform an initial contour under the influence of various forces until
it fits the target structure. These forces are usually computed from the min-
imization of a so-called energy functional describing the characteristics of the
structure, and defined to be minimal when the model coincides with the target.
Deformable models also offer a semantic interpretation of each object, allowing
independent and precise object measurements (e.g. size, shape, resemblance to
a reference model etc.) rather than global image measurements.
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Two main families of deformable models can be distinguished, depending on
the mathematical representation of the contour: in explicit models (known as
snakes in 2D [5]), the boundary is represented by a parametric function, and
in implicit models, the contour is defined as the zero level of a higher dimen-
sional scalar function (called level set function) [6]. Each family has advantages
and drawbacks, the choice thus mostly depends on the application. We briefly
summarize the main advantages and drawbacks of both approaches in table 1.

Table 1. Brief comparison of the different advantages of 3D explicit and implicit
deformable models. We focus on the aspects that concern our applicative context.

Explicit Implicit

Topology handling – +

Implementation – +

Memory consumption + –

Real-time visualization + –

Shape description + –

Implicit models handle contour splitting and merging implicitly, thus they are
well suited to segment an unknown number of objects with a single contour. They
are easy to implement in any dimension, however they manipulate a heavy data
structure (of the size of the image), easily reaching hundreds of megabytes in 3D.
Biological applications can be found in [7][8], however visualization is achieved
using a 3D reconstruction algorithm, hence real-time visualization is not possible.
Finally, geometrical measurements in a voxel-type structure is dependent on the
resolution and thus yields approximation errors.

Explicit models perform faster, but are complex to implement in 3D. More
and more methods therefore work directly with the discrete form of the surface
(often called polygonal mesh) consisting of a set of connected points forming a
closed polygonal manifold [9]. This representation enables the introduction of
geometric rules that can handle surface splitting and merging [10]. Also, geo-
metrical measures can be computed directly from the mesh in a simpler and
more precise manner [11]. Since polygonal meshes rely on the same data struc-
ture as conventional computer graphic cards, 3D rendering is available with no
additional time-cost, allowing real-time visualization. More popular in medical
imaging [12], this approach has been recently applied to automated cell segmen-
tation in fluorescence microscopy (the Active Mesh framework [13]).

In this paper, we propose a fully automated framework for nuclear shape
segmentation and analysis based on the Active Mesh framework and propose a
set of shape descriptors that can be used to discriminate different phenotypes of a
given cell line, showing how this framework is suitable for 3D HCS applications.
In section 2, we describe the biological experiment and present the analysis
framework. Then we evaluate the method as well as the shape descriptors in
section 3. Section 4 concludes the paper and discusses pending applications for
the proposed framework.
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2 Material and Methods

2.1 Biological and Imaging Protocol

A first experiment was conducted on two cell lines: HEK-293 (Human Embry-
onic Kidney) and Hela (Henrietta Lack), and a second was performed on 10μm
fluorescent beads (96-Whatman without skirt, Evotec, Germany). All cells were
grown on 96-well optical bottom plates, black (Greiner) under same culture con-
ditions (DMEM with 10% FBS). Nuclei were labeled using DNA-specific DRAQ5
fluorescent dye (Biostatus, UK) following the instructions of the manufacturer.

Images were acquired at room temperature using 633nm excitation wave-
length with 650nm long pass emission filter. The Z-stacks were obtained, for
HEK-293 nuclei, on a confocal line-scanning microscope equipped with a oil-
immersed plan apochromat 63x lens of NA 1.4 (LSM 5 Live, Zeiss, Germany),
and for both Hela nuclei and fluorescent beads, on an automated Nipkow-disk
confocal microscope (Opera, Evotec, Germany) equipped with a water-immersed
plan apochromat 40x lens of NA 0.9 (Olympus, Japan).

2.2 Quantitative Analysis Method

In this section we describe the principal components of the nuclei analysis work
flow, from segmentation to quantitative analysis. We start by describing the
characteristics of the core segmentation method (the Active Mesh model), and
then present each step of the final analysis work flow.

Definition of an Active Mesh. An active mesh [13] is a three-dimensional
discrete surface defined by a list of vertices forming a closed set of oriented tri-
angles, such that the mesh boundary represents at all times the contour of a
volumetric object. The deformation of the mesh is driven by that of its vertices,
which evolve in a real-coordinates space bounded by the image (i.e. the vertices
are not fixed on the image grid). To avoid excessive complexity in the manifold
structure, a regular sampling is imposed, such that all connected mesh vertices
remain within an arbitrary distance interval [dmin, dmax] from each other. There-
fore, as the mesh grows or shrinks, vertices are respectively added or deleted
automatically in order to maintain homogeneous edge lengths over the surface.
To speed up computation, a multi-resolution approach is chosen, such that the
distance interval varies during the evolution: the initial surface has a coarse res-
olution (vertices are far from each other). Then, as the surface approaches to the
solution, dmin and dmax are progressively reduced, causing a global refinement
of the mesh, and so until a suitable resolution is reached. This scheme allows
fast and efficient sub-resolution segmentation.

Energy minimization. In our method, we choose to minimize the well-known
Mumford-Shah piecewise-smooth functional (or reduced Mumford-Shah func-
tional) [14]. This functional reads

F (Γ, c1, · · · , cn) = λ

n∑
i=1

[∫
Ri

|u0 − ci|2dω

]
+ μ

∫
Γ

ds (1)
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and states that the target regions Ri, described by their mean intensity ci, should
resemble to the original image u0 (first term), while the boundary set Γ between
the regions should be minimal to avoid over-segmentation (second term). λ and
μ are non-negative weighting parameters, and dω and ds are the elementary
volume and surface respectively. This functional has shown to be efficient for
cell and nucleus segmentation in both 2D and 3D fluorescence imaging [15][8],
since the target entities are fully stained and have very few corners and cusps.
One region Rout represents the image background, and every other region Ri>0

represents an object that will be segmented by a specific mesh. The boundary
set Γ thus corresponds to the set of meshes that evolve in the image domain,
and the equation above can be rewritten as follows:

F (M1, · · · ,Mn, cout, c1, · · · , cn) = λ

∫
Rout

|u0 − cout|2dω +

n∑
i=1

[
λ

∫
Ri

|u0 − ci|2dω + μ

∫
Mi

ds

]
, (2)

where Rout denotes the background component of the image with mean intensity
cout, and ci is the mean intensity inside the mesh Mi segmenting the object
i. The minimization is done using a steepest gradient-descent method using
the Euler-Lagrange equations (see details in [13] and [16]). The final algorithm
complexity is O(N) per iteration, where N is the total number of vertices forming
the n meshes. The number of iterations depends on the model initialization, as
we shall discuss below.

Initialization. Due to the non-convexity of the energy functional in Eq. 2,
convergence is only guaranteed to a local minima. Therefore, deformable models
perform better and faster when they are initialized close to the solution. To avoid
manual initialization, we propose the following automatic scheme:

– a. Blur the original stack with a Gaussian filter,
– b. Threshold the blurred stack using a 2-class K-Means algorithm,
– c. Extract the connected components (number and average diameter),
– d. Eliminate the objects partially visible (i.e. on the image edge),
– e. Initialize each surface by a coarse 3D reconstruction of each component,
– f. Evolve all surfaces simultaneously on the original (non-blurred) stack.

The 3D reconstruction involved in step (e) utilizes the Marching Tetrahedra
algorithm [17]. This algorithm has the interesting property of using the same
data structure as an active mesh. Hence, no data conversion is necessary, and
the surface can be directly used as an initialization, that will hence be very
close from the target boundary. Although 3D reconstruction algorithms are time-
consuming at fine resolution, a coarse (i.e. fast) reconstruction is sufficient in our
case since the model handles refinement automatically during the segmentation.

Visualization. Since each active mesh utilizes the same data structure as
current graphic cards (typically a set of connected vertices), the rendering is
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straightforward and performed on the graphic card parallely to the main com-
putation, yielding no additional time cost. This feature first allows real-time
visual monitoring of the analysis, for instance to tweak the algorithm parame-
ters. Secondly, it allows the method to save the 3D scene corresponding to each
stack in a database, in order to provide off-line visual feedback after the analysis.

2.3 Statistical Analysis

In order to describe the nuclei shapes as best as possible, we wish to find a
set of independent measures in order to compute robust statistics on the ob-
jects. In the following, we compute the following criteria from the final mesh:
Surface, Volume, LongAxis, Roughness, RadiusCV, HullDiff. While Surface and
Volume are quite self-explanatory, the other criteria are less obvious and detailed
below.

– The LongAxis measure is the longest distance between two mesh vertices,
eventually serving as an object elongation indicator.

– The Roughness is a measure outlining the local vibrations of the surface
membrane. This measure should be low for convex objects and higher when
the surface exhibits local concavities. To compute this value, we start by
defining a local curvature measure for each mesh vertex v as the dot product
between the outer normal −→Nv (of unit length) and the barycentric normal−→
Bv linking v to the center of its neighbor vertices in the mesh (see figure
2). If the vectors have opposite directions (i.e. negative dot product), the
surface is locally convex. If the vectors have same directions (i.e. positive dot
product), the surface exhibits a local concavity at the given vertex. Finally,
the roughness measure is defined as the standard deviation of all the local
curvature values. Reference value is 0 for a sphere.

– The RadiusCV measure describes how different the object shape is from a
sphere. This measure is obtained for each mesh by computing the standard
deviation of the distances between the mass center and each vertex, normal-
ized by the mean radius (definition of the coefficient of variation). Reference
value is 0 for a sphere.

Nv .Bv < 0Nv .Bv < 0Nv .Bv < 0 Nv . Bv > 0Nv . Bv > 0

Fig. 2. Description of the roughness measure at a given vertex v . In case of a local
convexity (left), the outer normal (red) and barycentric normal (blue) have a negative
dot product. In case of a local concavity (right), the dot product is positive.
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– The HullDiff measure is the difference percentage between the volume of the
object and that of its convex hull (i.e. the smallest convex surface that can
contain it). This measure will be useful to discriminate bean-shaped objects
for instance. Reference value is 0 for a convex object.

3 Experiments and Results

3.1 Segmentation

The automated segmentation and shape measurement protocol was first tested
on a set of Z-stacks of HEK-293 cells acquired one by one on a Zeiss LSM 5
Live microscope, yielding 22 stacks of size 512 × 512 × 60 voxels and spatial
resolution 0.28 × 0.28 × 0.5 μm, totalizing 121 nuclei. Then, the method was
applied on Hela cells using a automated imaging platform (Evotec Opera). We
used 20 wells of a 96-well plate, and acquired in each well one Z-stack of size
688× 520× 31 voxels and spatial resolution 0.327× 0.327× 0.75 μm, totalizing
201 nuclei. The computation time ranged from 20 to 40 seconds per stack for
all experiments, depending on the number of objects. This time includes: stack
loading into memory, initialization (see section 2.2), segmentation and shape
measurements of the detected objects.

Figures 3 and 4 present results for the HEK-293 and Hela cells experiments
respectively. Left images show a maximum intensity projection (MIP) of one
of the Z-stacks. Middle images show a snapshot of the 3D scene taken right
after initialization. One can clearly see that cells touching the image edge have
been automatically removed, and that the coarse 3D reconstruction using the
Marching Tetrahedra are fast and efficient estimates of the nuclei surfaces. Right
images show a similar snapshot at the end of the segmentation.

10μm

Fig. 3. Segmentation of a HEK-293 cell nuclei Z-stack (size 512 × 512 × 60). Left:
maximum intensity projection of the original stack. Middle: snapshot after initialization
(coarse 3D reconstruction). Right: snapshot after segmentation.
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10μm

Fig. 4. Segmentation of a Hela cell nuclei Z-stack (size 688×520×31). Left: maximum
intensity projection of the original stack. Middle: snapshot after initialization (coarse
3D reconstruction). Right: snapshot after segmentation.

3.2 Shape Analysis

The validation contains two steps. First, we check that our shape measures are
consistent on fluorescent beads. Then, we check their independence in order to
keep a compact set of non-redundant shape descriptors.

Validation on Fluorescent Beads. We have conducted a screening experi-
ment on fluorescent beads following the protocol described in section 2.1. Ex-
pected values and average measures over 100 beads are given in table 2. Although
all measures are close from the expected values, detected objects seem generally
bigger than the real objects (e.g. the LongAxis measure is 14% higher). This is
due to the growing effect of the microscope PSF along the Z axis. This effect
decreases as the objects size increases, therefore this error is expected very low
for our real experiments, where nuclei are bigger than the beads.

Table 2. Evaluation of shape descriptors on 10 μm fluorescent beads. Measured values
are averaged over 100 beads. Coefficients of variation below 1 indicate low-variance
populations.

Surface Volume LongAxis Roughness RadiusCV HullDiff

Expected 314.1 523.5 10 0 0 0

Measured 326.9 546.2 11.4 0.02 0.09 0.002

Coef. Var. 0.230 0.015 0.016 0.058 0.032 0.165

Dispersion. We evaluate the dispersion of each measure by computing its coef-
ficient of variation (CV) on each population, i.e. the standard deviation-to-mean
ratio. Results are shown in table 3. All coefficients are below 1, implying stable
measures, nonetheless, some measures have a higher value than others. For in-
stance, the HullDiff measure has a CV around 0.5 for both populations, therefore
care should be taken in its interpretation in a shape comparison context. Same
remark applies to the Volume measure in the HEK-293 case.
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Fig. 5. Statistics on the HEK-293 cell line. Correlation (top) and Hoeffding’s D (bot-
tom) measures are given for the criteria presented in section 2.3. D values range from
−0.5 to 1, 1 indicating complete dependence. Red ellipses cover 90% of the population.



3D Automated Nuclear Morphometric Analysis Using Active Meshes 365

Fig. 6. Statistics on the Hela cell line. Correlation (top) and Hoeffding’s D (bottom)
measures are given for the criteria presented in section 2.3. D values range from −0.5
and 1, 1 indicating complete dependence. Red ellipses cover 90% of the population.
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Table 3. Coefficient of variation of each measure on each population

Surface Volume LongAxis Roughness RadiusCV HullDiff

HEK nuclei 0.280 0.425 0.145 0.108 0.281 0.544

Hela nuclei 0.196 0.278 0.135 0.128 0.264 0.455

Robustness. Finally, we determine the robustness of our criteria by computing
two correlation measures: the classical correlation and the Hoeffding measure of
dependence D [18]. Results are given in Figures 5 (HEK cell line) and 6 (Hela
cell line). Figures were obtained using the multiple correlation analysis tool of
JMP software (SAS Institute, 1994). The strong correlation between the Volume
and Surface measures, as well as with the LongAxis measure, coincides with the
fact that these three measures are closely linked for any convex object. Another
interesting observation is the relation between the HullDiff and the Roughness
measures. This is due to the fact that a surface concavity at a given point creates
a volume gap with the convex hull at that point. However, due to its local nature,
the Roughness measure is not suited to detect large but smooth concavities such
as for bean-shaped objects, for which HullDiff is much more efficient.

4 Conclusion

In this paper, a fully automated framework has been proposed for efficient 3D
segmentation and morphometric analysis of cell nuclei, in live cells. We have
found five independent 3D shape descriptors to describe our cell lines: Volume,
LongAxis, Roughness, RadiusCV, and HullDiff. These measures will be used to
study changes in cell phenotypes under challenging conditions. The method is
robust and particularly well adapted to 3D fluorescence microscopy. We further
plan to implement a larger array of shape descriptors, in order to enable bet-
ter discrimination. Although this is not the case of nuclei, it is clear that in
some applications the objects of interest may be touching and would need to
be separated before their analysis. We are thus working on automated separa-
tion algorithms, in order to provide a robust and generic analysis tool for shape
analysis in 3D HCS.
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Abstract. A time-frequency method based on Cohen’s class of distri-
bution is proposed for analysis of functional magnetic resonance imaging
(fMRI) data and to detect activation in the brain regions. The Rihaczek-
Margenau distribution among the various distributions of Cohen’s class
produces the least amount of cross products and is used here for calculat-
ing the spectrum of fMRI time-series. This method also does not suffer
from the time and frequency resolution trade-off which is inherent in
short-term Fourier transform (STFT). Other than detecting activation,
the time-frequency analysis is also capable of providing us with more
details about the non-stationarity in fMRI data, which can be used for
clustering the data into various brain states. The results of brain activa-
tion detection with this techniques are presented here and are compared
with other prevalent techniques.

1 Introduction

Human brain is a complex organ anatomically and more so in terms of its func-
tionality. A number of signal and image based techniques have been used to un-
derstand the functionality of the brain. Functional Magnetic Resonance Imaging
(fMRI) is one such imaging technique which is also non-invasive. It effectively
captures the changes in the Blood Oxygenation Level Dependent (BOLD) con-
trast, allowing the evaluation of brain activity due to external stimuli [1]. Usually,
fMRI data consists of time-series emanating from each brain voxel, collected over
the periods of activation and rest. The low signal-to-noise ratio (SNR) of fMRI
data makes detection of the activation-related signal changes difficult; hence
most of the data is collected from periodic stimulation alternating with the rest
condition. The temporal dynamics of the activation response, which is delayed
and is relatively slow compared to actual brain activity, is another problem that
must be dealt with during analysis. Most of the present methods rely on exclusive
modeling of the hemodynamic response function to detect this delayed activa-
tion [2]. The most extensively used fMR data analysis techniques are variants
of general linear model based on t -test, F -test, correlation coefficients (between
observed responses and stimulus function) or multiple linear regression. These
techniques require accurate knowledge of stimulus function [3].
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The frequency-domain analysis methods are able to overcome some of these
shortcomings, as they do not require exclusive modeling of the hemodynamic
response function and also the accurate knowledge of stimulus signal is not nec-
essary. Spectral analysis methods have also been found to obtain better statistical
estimators for short data segments [4]. Fourier transform has been used tradi-
tionally to calculate the signal spectrum but in the process of calculating the
spectrum, it looses the signal time information. Short-time Fourier transform
(STFT), or spectrogram, is able to provide the time-based spectrum, but suffers
from the time and frequency resolution trade-off condition. A number of tech-
niques have been developed to overcome this shortcoming of STFT. The first one
of these time-frequency techniques were Wigner-Ville distribution based on the
autocorrelation function. This technique although overcomes the time and fre-
quency resolution trade-off condition, it suffers from the presence of cross terms
in the spectrum [5]. Various distributions in the Cohen’s class aim at reducing
the cross-talk, while keeping the advantages of Wigner-Ville distribution [6]. The
Rihaczek-Margenau distribution of Cohen’s class was found to produce the least
amount of cross products and is used here for calculating the spectrum of fMRI
time-series and hence for activation detection.

2 Methods

2.1 Functional MRI Time Series

Functional magnetic resonance imaging data consists of a series of three-
dimensional brain scans taken at regular intervals during an experiment. This
complete set of spatio-temporal data can be considered as a functional image
of the brain. A functional image F can hence be defined as F : Ω × Θ →
{0, 1 . . .32767}, where Ω ∈ N3 denotes the three-dimensional spatial domain of
image voxels and Θ represents the scanning times. As these scans are acquired
at regular intervals of time, Θ = {Δ, 2Δ . . . nΔ} where Δ denotes the scanning
interval and n the total number of brain scans. A functional time-series is further
defined as the functional image at a particular voxel over the experimental du-
ration. Consider an fMRI experiment with series of brain scans taken at regular
intervals; let the stimulus signal be denoted by and the change in the BOLD
signal at a voxel i or the mean-corrected fMRI time-series be represented by.

The Wigner-Ville and other distributions of Cohen’s class use the approach
of calculating power spectrum from autocorrelation function, as is used in cal-
culation of power spectral density (psd) [7]. In the standard autocorrelation
function, summation is carried out over time as shown in Eq. (1), resulting in
the autocorrelation function ri(τ)which is a function of lag/time-shift τ only.

ri(τ) =
∑
t∈Θ

yi,tyi,t+τ (1)

The Wigner-Ville and other distributions of Cohen’s class use a variation of the
autocorrelation function where time remains in the result. In this case also, the
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comparison of waveform with itself is carried over all lag values, but instead of
integrating over time, comparison is done over all possible values of time. This
results in so-called instantaneous autocorrelation Ri(t, τ) of the fMRI data as
shown in Eq. (2).

Ri(t, τ) = yi,t+τy∗
i,t−τ (2)

where τ is the time lag and * represents the complex conjugate of the signal. The
instantaneous autocorrelation function retains both the lag and time value. The
Fourier transform of Ri(t, τ) is taken along the τ dimension, hence the result is a
function of both time and frequency. The relationship for determining the time-
frequency distribution of Cohen’s class from the instantaneous autocorrelation
function is as given in Eq. (3).

ρ(t, f) =
(n−1)Δ∑

τ=0

Ri(t, τ)G(t, τ)e−j2πfτ ; ∀t ∈ Θ, f ∈ fi (3)

where function G(t, τ) is based on a two-dimensional filter (filter for the auto-
correlation function) and this filter is what distinguishes various distributions
within the Cohen’s class, as described by Semmlow [6]. The expression for filter
G(t, τ) is given by the Eq. (4-5) below for both the Wigner-Ville and Rihaczek-
Margenau distributions of Cohen’s class.

G(t, τ) =
∫ ∞

−∞
g(v, τ)ejπvtdv (4)

g(v, τ) =
{

1 ; for Wigner-Ville distribution
ejvτ/2 ; for Rihaczek-Margenau distribution

(5)

Wigner-Ville distribution can be considered as a special class of Cohen’s distri-
bution as it does not apply a filter i.e. g(v, τ) = 1 and hence is simplified as in
Eq. (6).

W (t, fi) = FFT(Ri(t, τ)) (6)

The main problem with Wigner-Ville distribution is the presence of cross prod-
ucts in the spectrum and various distributions in the Cohen’s class aim to reduce
the amplitude of these cross products. All the transformations in Cohen’s class
of distribution produce better results when applied to a modified version of the
waveform termed the Analytic signal, which is a complex version of the original
signal. As the analytic signal does not contain negative frequencies, its use re-
duces the number of cross products. The approach based on Hilbert transform
of signal, as described by Semmlow [6], is being used here to derive the analytic
function. The Rihaczek-Margenau distribution of Cohen’s class was found to
produce the least amount of cross products and is used here for calculating the
spectrum of fMRI time-series and hence for activation detection [5]. The original
spectrum for Rihaczek-Margenau distribution is three dimensional as it is the
time-frequency distribution with amplitude of spectral components as the third
dimension. For activation detection, spectral magnitude at stimulus frequency
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can be obtained by summing together the spectral magnitude at this frequency
over all time-points. The comparison of magnitude at stimulus frequency hence
is used to select the set of activated voxels. The complete three dimensional
time-frequency information belonging to these activated voxels can then be used
for clustering and in describing the various brain states. The time-frequency
data can also be used to study the variation of characteristics of hemodynamic
response over different brain regions.

3 Results and Discussion

The proposed approach was tested on both synthetic and real functional MRI
time-series and the activation detection results were compared with the statisti-
cal parametric mapping (SPM) method.

3.1 Synthetic Data

A two-dimensional dataset with 64×64 pixels per image scan was generated for
the synthetic functional time-series, with 5 cycles of eight rest samples followed
by eight task samples. The duration between two scans was taken to be two
seconds (RT = 2s) and the box-car time-series was designed for activated pixels
while inactive pixels remain unchanged over time. The response of the activated
pixels was then generated by convolving the box-car time-series with a gamma
hemodynamic response function (lag = 5s and dispersion = 6s). Independent
and identically distributed (i.i.d.) Gaussian random noises was then added to
the time-series of both activated and inactive pixels. Pixel intensities of image
scans are given by the synthetic functional time-series (see Fig. 1). The signal-
to-noise ratio (SNR) is defined as SNR = h2/σ2, where h is the amplitude of the
box-car time-series, and σ is the standard deviation of the noise. Two different
values of SNR=1.2 and SNR=2.0 were used in generation of two sets of synthetic
data.

The results obtained for the SPM (F -test) and those obtained from Rihaczek-
Margenau distribution based spectrum, for synthetic images with SNR=1.2 and
SNR=2.0 are as shown in the Fig. 2 and Fig. 3 respecively.

The ROC curves obtained for two sets of synthetic data with SNR=1.2 and
SNR=2.0 are shown in Fig. 4(a) and ROC curves for various number of epochs
considered in the synthetic data are shown in Fig. 4(b). Both the plots indi-
cate better performance for Rihaczek-Margenau (Cohen’s class of distribution)
spectrum based activation detection, as compared to the SPM.

3.2 Functional MRI Data

FMR images analyzed in this section were obtained on a 3.0 Tesla Medspec
30/100 scanner (Bruker Medizintechnik GmbH, Ettlingen, Germany) at the
MRI Centre of the Max-Planck-Institute of Cognitive Neuroscience. A visual-
stimulation experiment using a FLASH Protocol was carried out to obtain these
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(a) (b) (c)

Fig. 1. Synthetic functional images (SNR=1.2) with i.i.d. Gaussian noises (a) Actual
activation (b) representative scan of rest state (40th scan) (c) representative scan of
stimulus state (80th scan).

(a) (b)

Fig. 2. Illustration of the detected activation on synthetic data with independent noise
(SNR=1.2) based on (a) SPM (F -test) (b) Rihaczek-Margenau distribution spectrum

(a) (b)

Fig. 3. Illustration of the detected activation on synthetic data with independent noise
(SNR=2.0) based on (a) SPM (F -test) (b) Rihaczek-Margenau distribution spectrum
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Fig. 4. ROC curves for synthetic data comparing the Rihaczek-Margenau distribu-
tion and SPM (F -test) technique considering (a) multiple epochs with varying SNR
(SNR=1.2 and SNR=2.0) (b) varying number of epochs with constant SNR.
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Fig. 5. Illustration of noisy fMRI data from a single voxel with respect to the stimulus
signal
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Fig. 6. Comparison of spectrum based on psd, discrete Fourier transform and Rihaczek-
Margenau distribution of Cohen’s class for the noisy voxel data (Fig. 5)
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Fig. 7. Contour plot of noisy voxel data of Fig. 5 based on (a) Rihaczek-Margenau
distribution (b) Short time Fourier transform (window size of 16 samples and overlap
of 8)
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images (TR=80.5ms; TE = 40ms; matrix = 128 × 64; The image matrices were
zero-filled to obtain 128 × 128 images with a spatial resolution of 1.953 × 1.953
mm; slice thickness = 5mm and 2mm gap). In all the experiments, on and off
stimuli were presented at a rate of RT = 5.16s per sample. Each stimulation
period had four successive stimulated, ON, scans followed by four rest scans,
i.e., stimulation OFF scans. Further details of this experiment can be found
in [8].

The spectrum as obtained from Rihaczek-Margenau distribution for a noisy
voxel data (Fig. 5) is compared with the spectrum obtained from the DFT
and psd in the Fig. 6. It is clear from the figure that the spectrum obtained
with Rihaczek-Margenau distribution has comparatively higher magnitude at
stimulus frequency and much lower magnitude at noise frequencies as compared
to the psd and DFT spectrum.

The original spectrum for Rihaczek-Margenau distribution is three dimen-
sional as it is the time-frequency distribution with amplitude of spectral com-
ponents as the third dimension (Fig. 7) and the two-dimensional plot (Fig. 6)
has been obtained by summing together the spectral magnitude for a given fre-
quency at all time-points. The comparison of magnitude at stimulus frequency
hence is used to select the set of activated voxels.

Activation detection results for the multiple cycle visual task fMRI data for
Rihaczek-Margenau distribution and SPM (F -test) are shown in the Fig. 8.

8x1010

2x1010

(a)

250

50

(b)

Fig. 8. Illustration of activation detection using (a) Rihaczek-Margenau distribution
(b) SPM (F -test)

4 Conclusion

A time-frequency method based on Cohen’s class of distribution for spectrum
calculation and detection of activated voxels in fMRI data was proposed and
presented in this paper. The technique is found to produce more accurate ac-
tivation maps as compared to the existing techniques. The technique is robust
to uncorrelated noise and is also able to detect voxels with delayed activation.
Our technique does not require prior information of the HRF, also the pre-
cise information of stimulus signal is not required. The information from the
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time-frequency analysis has not been exploited fully as yet in the present paper
and will be used in studying the variation of characteristics of hemodynamic re-
sponse over different brain regions and also in describing the various brain states
in our future work. Our future work also includes incorporation of variation of
structures and tissues into the detection of brain activation in multi-modality
frameworks [9].
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Abstract. Translation of human intentions into control signals for a computer, 
so called Brain-Computer Interface (BCI), has been a growing research field 
during the last years. In this way, classification of mental tasks is under 
investigation in the BCI society as a basic research. In this paper, a Weighted 
Distance Nearest Neighbor (WDNN) classifier is presented to improve the 
classification rate between the left and right imagery tasks in which a weight is 
assigned to each stored instance. The specified weight of each instance is then 
used for calculating the distance of a test pattern to that instance. We propose an 
iterative learning algorithm to specify the weights of training instances such that 
the error rate of the classifier on training data is minimized. 
ElectroEncephaloGram (EEG) signals are caught from four familiar subjects 
with the cue-based BCI. The proposed WDNN classifier is applied to the band 
power and fractal dimension features, which are extracted from EEG signals to 
classify mental tasks. Results show that our proposed method performs better in 
some subjects in comparison with the LDA and SVM, as well-known classifiers 
in the BCI field. 

Keywords: Nearest Neighbor, Weighted distance, Brain-Computer Interface, 
EEG. 

1   Introduction 

Classification of mental imagery tasks is used to help amyotrophic lateral sclerosis 
(ALS) patients to enable them to communicate with their environment [1]. A bright 
view to the future of this research is to help ALS patients by enabling them to move 
their limbs with their thoughts. Limb movement can be done by Functional Electrical 
Stimulation (FES) [2], which is controlled by the BCI system. This interesting 
application is in its primary stages mainly due to low classification rate even between 
two imagery tasks in some subjects.  

The research in the BCI field can be categorized into synchronous [1] and 
asynchronous [3] methods. Most articles focus on the synchronous BCI which is so 
called cue-based BCI. In this way, Boostani et al. [4] applied Adaboost classifier on 
the fractal dimension features (extracted from the EEG signals) and showed that this 
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combination has a good prediction ability. In a comprehensive study, Boostani et al. 
[5] employed genetic algorithm on different features and used three different 
classifiers on the weighted features to show that choosing the band power and fractal 
dimension as features (by genetic weighting) can significantly improve the 
performance of cue-based BCI system. The Graz-BCI research group has employed 
discriminative features based on second order statistics such as band power [1], 
adaptive autoregressive coefficients [6], and wavelet coefficients [7] with well-known 
classifiers containing Fisher’s Linear Discriminant Analysis (FLDA) [8], Finite 
Impulse Response Multi-Layer Perceptrons (FIRMLP) [9], Linear Vector 
Quantization (LVQ) [10], Hidden Markov Models (HMM) [1], and Distinction 
Sensitive Learning Vector Quantization (DSLVQ) [11] to improve the classification 
rate between the various movement in imagery tasks. Deriche et al. [12] selected the 
best feature combination among variance, AR coefficients, wavelet coefficients, and 
fractal dimension by modified mutual information method. They showed that a 
combination of the aforementioned features is more efficient than each of them 
individually. 

As a simple but efficient supervised learning algorithm, the nearest neighbor 
classifier has been used successfully on pattern classification problems [13], [14]. 
However, this method fails to perform satisfactorily in cases that different classes are 
overlapped in some regions of feature space. Another problem is the noisy training 
instances that can degrade the performance of this classifier in the generalization 
phase.  

The basic NN uses all training data in the generalization phase. It also considers all 
the stored instances with the same importance for classification, but the instances are 
different in being representative of their typical classes.  

Recently, many improving techniques have been proposed and added to the nearest 
neighbor algorithm such as editing, condensing, learning, and weighting [15] for 
overcoming to its drawbacks. Moreover, there has been considerable research interest 
in learning mechanisms to locally adapt the distance metrics [16], [17]. Wang et al. 
[18], [19] have shown that by including a local weight and introducing a simple 
adaptive distance measure the performance of the NN improves significantly. In this 
paper a novel learning algorithm is presented which is used to assign a weight to each 
stored instance, which is then contributed in distance measure, with the goal of 
improvement in generalization ability of the basic NN. Our proposed learning method 
is used to adjust the weights of instances in the training set. The basic component of 
the learning algorithm is an optimization procedure that finds the best operating point 
of a classifier (i.e., resulting in minimal error rate of the classifier on train data). The 
proposed scheme achieves two desirable goals at the same time. The classification 
rate is improved by adjusting a weight for each instance and considering it while 
calculating distance measure. Our experiments show that the proposed WDNN 
algorithm can make a robust and accurate classifier system that improves the 
performance of the cue-based BCI. 

The rest of this paper is organized as follows. In section 2, subjects and the method 
of data acquisition are described. In section3, features are illustrated. In section 4, the 
proposed WDNN and our proposed method of learning the weights of training 
instances are described. In section 5, the experimental results are presented and in 
section 6, conclusion is discussed. 
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2   Subjects and Data Acquisition 

Four subjects (L1, O3, O8, and G8), familiar with the Graz-BCI, participated in this 
study. Subjects are ranged from 25 to 35 years old. Each subject sat in a armchair 
about 1.5 meters in front of the computer screen. Three bipolar EEG-channels were 
recorded from 6 Ag/AgCl electrodes placed 2.5 cm anterior and 2.5 cm posterior to 
the standardized positions C3, Cz and C4 (international 10-20 system). The EEG was 
filtered between 0.5 and 50 Hz and recorded with a sample frequency of 128 Hz. 

The training in Graz-BCI paradigm is consisted of a repetitive process of triggered 
movement imagery trials. Each trial lasted 8 seconds and started with the presentation 
of a blank screen. A short acoustical warning tone was presented at second 2 and a 
fixation cross appeared in the middle of the screen. At the same time, the trigger was 
set from 0 to 1 for 500 milliseconds. From second 3 to second 7, the subjects 
performed left or right hand motor imagery according to an arrow (cue) on the screen. 
An arrow pointing either to the left or to the right indicated the imagination of a left 
hand or right hand movement. The order of appearance of the arrows was randomized 
and at second 7 the screen content was erased. The trial finished with the presentation 
of a randomly selected inter-trial period (up to 2 seconds) beginning at second 8. 
Figure 1. shows the timing scheme. Three sessions were recorded for each subject on 
3 different days. Each session consisted of 3 runs with 40 trials each. 

 

Fig. 1. Training paradigm 

3   Feature Extraction 

The goal of feature extraction is to find an informative representation of the data that 
simplifies the detection of brain patterns. The signal features should encode the 
commands sent by the user. Band power and fractal dimension features are used in 
this paper. These are briefly described in the following sections. 

3.1    Band Power (BP) 

The EEG contains different specific frequency bands, that is standard alpha (10-
12Hz) and beta (16-24Hz) bands, which are particularly important in classifying 
different brain states, especially for discriminating imagery tasks. For this study, band 
power features were calculated by applying a Butterworth filter (order 5), squaring of 
the samples and then averaging of subsequent samples (1 s average with 250 ms 
overlap).  



 High Performance Classification of Two Imagery Tasks 381 

3.2    Fractal Dimension (FD) 

BP and AAR features are based on the second order statistics of the signal and thus 
they describe the spectral information in the data. FD, however, captures nonlinear 
dynamics in the signal. Although all features here try to capture the underlying 
neurophysiological patterns in the signal, FD has a direct relationship with the entropy 
of the signal, which in turn is related to information content of the signal. FD is a 
measure of complexity of a signal. More fluctuation in the attractor shape is reflected 
by a higher value of FD. There are several methods to calculate the FD [20]. In this 
study we employed Higuchi’s method [21], which is described as follows: Consider a 
signal containing N samples {x(1) ,x(2),…,x(N)} . Construct k new time series k

mx  

(embedded space) as: 
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N m
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where m indicates the initial time value, and k represents the discrete time interval 
between points. For each of the k time series xm
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where N is the total length of the data sequence x and (N-1)/[(N-m)/k]k, is a 
normalization factor. An average lengyth of every sub-sequence is computed as the 
mean of the k lengths Lm(k). This procedure is repeated for the different values of k (k 
= 1,2, …,kmax), that kmax varies for each k. There is no analytical formula for 
determining the value of k, therefore, it has to be found experimentally. An average 
length for each k is obtained which may be expressed as proportional to k-D, where D 
is the signal's FD. In order to find the best value of k, from the log-log plot of 
log(L(k)) versus log(1/k), one obtains the slope of the least-squares linear best fit. The 
FD of the signal, D, is then calculated as: 

D = [log L(k)] / log(1/k) (3) 

4   Weighted Distance Nearest Neighbor (WDNN) 

We briefly describe the NN rule to introduce the notation. For an M-class problem, 
assume that a set of training examples of the form {(Xi, Ci) | i = 1,..., N} is given. 
Where, Xi is a n-dimensional vector of attributes Xi = [xi1, xi2, ...,xin]

T and Ci ∈  [1,2, 
…,M] defines the corresponding class label. To identify the NN of a query pattern Q, 
a distance function has to be defined to measure the distance between two patterns. 
Euclidean distance has conventionally been used to measure the distance (i.e., 
dissimilarity) between two patterns Xi and Xj: 
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2
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d( , ) ( - )i j

n

k
X X ik jkx x

=
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Assuming that each attribute of the problem is normalized to the interval [0,1], we can 
equivalently work with the following similarity measure (instead of Euclidean 
dissimilarity measure), which normalizes the similarity between two instances Xi and 
Xj to a real number in the interval [0,1]: 

d( , )
( , )  = 1 - i j

i j

X X
X X

n
μ  (5) 

With basic NN rule, the query pattern Q is classified by the class most similar training 
pattern Xp in the training set. This can be formally stated as: 

{ }
1

p = argmax  ( , )i
i N

Q Xμ
≤ ≤

 (6) 

The NN rule assumes that all classifiers (i.e., stored instances) are equally reliable and 
uses equation (6) to find the NN of a query pattern. This paper is based on the idea 
that some of the stored instances are more reliable classifiers than others. We 
accomplish this by assigning a weight wk to each instance Xk. The weights of the 
training instances are used in the test phase to find the NN of a query pattern: 

{ }
1

p = argmax  ( , )j j
j N

w Q Xμ
≤ ≤

×  (7) 

We refer to this classifier as WDNN. Alternatively, the scheme can be viewed as a 
form of adaptive distance measure for NN that allow the distance measure to vary as a 
function of instances in the training set. In the next section, we present an algorithm 
that finds the best operating point in 2-class problems. This algorithm will be used as 
the basic component of the proposed scheme in section 4.2 to learn the weights of 
training instances in a WDNN classifier. 

4.1    Learning the Best Operating Point in 2-Class Problems 

A discrete classifier such as a classification tree only produces a class label for an 
input pattern. For a 2-class problem (with positive and negative class labels), given a 
test set of P positive and N negative labeled patterns, a classifier of this type generates 
a 2×2 confusion matrix (shown in Fig.2) representing the performance of the 
classifier. The accuracy of the classifier is defined as: 

Accuracy = +  
TP TN TP FP N

P N P N P N

+ −=
+ + +

 (8) 

Many classifiers, such as Bayesian classifier or neural networks naturally assign a 
score S(Xt) to each input pattern Xt (i.e., scoring classifiers). For example, naive Bayes 
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classifiers output posterior probability distribution over classes. In this case, the score 
of a pattern for our 2-class problem can be defined as: 

( , ) ( , )
( )

( , ) 1 ( , )
t t

t
t t

pr n X pr n X
S X

pr p X pr n X
= =

−
 (9) 

Where pr(p,Xt) and  pr(n,Xt) denote the estimated probabilities that the pattern Xt is of 
positive and negative class, respectively. With the above definition, the score is a 
numeric value (in the range 0 to ∞) expressing the degree that Xt is thought to be of 
negative class.   

A scoring classifier can be converted to a discrete classifier by specifying a 
threshold on score. A pattern is classified as negative if its score is greater than the 
specified threshold and positive otherwise. In this way, the accuracy corresponding to 
each specified threshold can be calculated using (8). 

 

Fig. 2. Confusion matrix for a discrete classifier 

Having the relation between a threshold and corresponding accuracy of the 
classifier, the best threshold can be easily found by varying the threshold from 0 to ∞. 
Actually, it is sufficient to consider those thresholds such that classification of an 
instance changes from negative to positive. Based on this idea, an efficient algorithm 
for calculating the best threshold is given in [8, 17]. For this purpose, the patterns are 
ranked in ascending order of their scores (i.e., S(X1)< S(X2)<….<S(XP+N)). 
Considering any threshold between S(XK) and S(XK+1), the first K patterns will be 
classified as positive and the remaining P+N-K patterns as negative. In this way, a 
maximum of P+N+1 different thresholds should be examined to find the best 
threshold. The first threshold classifies everything as negative and the last threshold 
classifies everything as positive. The rest of the thresholds are chosen in the middle of 
two non-equal successive scores S(XK), S(XK+1) in the list such that S(XK) ≠ S(XK+1). 
The best threshold is simply the one that maximizes the accuracy (8) of the classifier. 
An algorithm to find the best threshold is given in Table 1. This algorithm receives a 
set of patterns and their scores as input and returns the best threshold (i.e. giving 
maximum classification rate) as output. 

The important point is that the value of the best threshold (i.e., best-th) calculated 
using the algorithm of Table 1 can be used as the weight for positive class. That is, 
instead of classifying a pattern Xt as positive if S(Xt)<best-th, we can equivalently 
classify the pattern as positive if best-th × pr(p,Xt) > pr(n,Xt). 
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Table 1. Algorithm for finding the best threshold 

 Inputs: patterns Xt, scores S(Xt) 
Output: the value of best threshold (best-th)  

current = number of misclassified patterns corresponding to the threshold of th = 0 (i.e., 
classifying everything as class  T ) 
optimum = current 
best-th = 0 
rank the patterns in ascending order of their scores 
{assume that Xk and Xk+1 are two successive patterns in the list} 
for each different threshold th = (Score(Xk)+Score(Xk+1))/2  

current = number of misclassified patterns corresponding to the specified threshold 
(i.e., all patterns Xt having Score(Xt) < th are classified as class T) 
if current < optimum then 

optimum = current 
best-th = th 

end if 
end for 
{assume that last is the score of last pattern in the list and τ is a small positive number} 
current = number of misclassified patterns corresponding to th = last + τ (i.e., 
classifying everything as class T) 
if current < optimum then 

optimum = current 
best-th = th 

end if 
return best-th 

4.2    Learning Weights of Training Instances  

For an M-class problem, assume that a training set Г consisting of N labeled training 
patterns (i.e. Г={Xj, j=1, 2, ..., N}) is available. In this section, we propose an efficient 
algorithm that attempts to maximize the classification accuracy of the WDNN 
classifier on training data by learning the weights of instances in the training set. 

In its basic form, the proposed algorithm is a hill-climbing search method. The 
algorithm starts with an initial solution to the problem (i.e., {wk = 1, k =1, 2, …, N}), 
and sequentially improves the solution by finding a neighbor solution that is better 
than the current one. A neighbor solution is different from the current solution in the 
value of just one parameter (i.e., the weight of one instance). Without the algorithm 
proposed in this section, many neighbor solutions should be examined (i.e., making 
the search process slow) to find a solution that is better than the current solution. This 
is due to the complexity of the problem and the fact that the optimization parameters 
(instance weights) are continuous.  

The algorithm given below can provide neighbor solutions that are at least as good 
as the current solution. This algorithm, which is actually an extended version of the 
algorithm given in Table 1, finds the optimal weight of an instance assuming that the 
weights of all other instances are given and fixed. Note that, by optimizing the weight 
of one instance, the algorithm is indeed providing a neighbor solution that is better 
than (or at least as good as) the current solution. 
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We illustrate this algorithm to find the optimal weight of Xt ε Г assuming that the 
weight of all other instances in Г are given and fixed. Further, assume that Xk is a 
training instance of class T, where T ε {1, 2, …, M}. The optimal weight of  Xk can be 
found using the following steps. 

1. I = {} 

2. Classify all training examples using wk = ∞ (i.e., a very large positive number) 

3. Classify all training examples using wk = 0.0 

4. Add to I those training examples that are classified correctly only in one of the 
previous steps (step 2 or 3). 

5. Calculate the score of each training example Xt ∈ I using the following 
measure.  

{ }
1
max ( , )|

( )
( , )

j t j j
j N

t
t k

w X X X
S X

X X

μ

μ
≤ ≤

⋅ ∈ Γ
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6. The algorithm of Table 1 can now be used to find the best threshold (i.e. the 
best weight wk of instance Xk). For this purpose, a 2-class situation is formed 
by considering class T as positive class and a class by merging all other classes 
as negative class.  

The purpose of steps 1 to 4 is to identify those training examples (by collecting them 
in the set I) that their correct classification depends directly on the value of wk. 

Overall, the search for locally optimum solution starts with an initial solution to the 
problem and sequentially improving the solution using a hill-climbing approach. The 
above 6-step algorithm can be used to find all neighbor solutions (i.e., being different 
just in the value of one parameter) that are at least as good as the current solution. The 
usual hill-climbing search can be performed by sequentially replacing the current 
solution with the best neighbor solution. Finding all neighbor solutions can take a 
long time when the number of parameters (i.e., instance weights) is large. To speed up 
the search, in our implementation, the value of just one parameter is updated in each 
step of the hill-climbing search. That is, the search for locally optimum solution is 
conducted by optimizing each instance in turn assuming that the order of the instances 
to be optimized is fixed. The search terminates if no neighbor solution could be found 
that is better than the current one (or after a certain number of iterations).  Obviously, 
with this modification, the algorithm is sensitive to the order of instances considered 
for optimization. In simulation results reported in section 5, we fix the ordering by 
sorting the instances based on their similarity to their nearest enemy instance. 

( ) ( ) ( ){ }
1

= , | ( )enemy k k j j k
j N

X max X X class X class Xμ μ
≤ ≤

≠  (11) 

Where, μenemy(Xk) is the similarity of instance Xk with nearest instance of enemy class, 
and class(Xk) is used to denote the true class of Xj. The instances in the training set are 
ranked in the descending order of measure (11) and optimized in that order. 

When finding the best weight of an instance, it can happen that the set I is empty 
after step 4 of the above algorithm. This actually indicates that the classification rate 
on the training data cannot be improved by setting the weight of this instance. In other 
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words, the instance can be pruned (i.e. by setting its weight to zero) without affecting 
the classification rate. Note that an instance can also be pruned if the value of best-th 
returned by the algorithm of Table 1 is zero. One key feature of the proposed scheme 
is pruning redundant instances visited during the learning process. The final set of 
instances usually contains much fewer instances contributed in the classification 
process. This feature is very useful since, the proposed algorithm can be considered as 
a serious instance reduction technique for the NN classifier. 

5    Experimental Results 

In our experiments, in order to compare our proposed method with the well-known 
classifiers in the BCI field, Support Vector Machine (SVM) [24] and Linear 
Discriminant Analysis (LDA) [25] are employed. The classification results are 
produced in the way by which one of the features (i.e. BP or FD) is applied to one of 
the classifiers (i.e. FLDA or SVM or WDNN), which referred to as the combinations 
of single feature classifier. 

At first, EEG signals from four trained subjects (L1, O3, O8, and G8) were 
recorded. Out of 360 trials recorded for each subject, 240 trials were used in the train 
and the rest in the test phase. FD and BP features were extracted from the signals and 
basic NN, WDNN, SVM, and FLDA were used as the classifiers. In the train phase, 
significant features were selected using average accuracy on the validation set by ten 
times ten folds cross validation (10CV). In this way, a classifier is trained with the 
features of all trials in each 250 ms through the paradigm. Our paradigm is 8sec.; 
therefore, we have 32 different feature sets for all trials. To choose the best feature 
set, we calculate the error rate of the classifier by 10CV on training data. Classifiers, 
trained with the best feature set for each subject, were then used to classify test 
feature vectors.  

Results of test data for th e subjects with all of the classifiers and features 
are shown in Table 2. It can be seen that the WDNN has a good compatibility with the 
FD feature in comparison with the BP. Results of combination of FD and WDNN, in 
three cases out of four, led to the better results in comparison with FLDA, SVM, and 
standard NN. Also, in the case O8, combination of WDNN and BP shows a 
supremacy compare to the other considered classifiers. Incidentally, in Table 3, 
number of stored instances in NN and WDNN are compared which shows a drastic 
instance reduction performed while generalization property is increased dramatically. 
The reason is that in the NN method all trained samples (240) are considered for 
measuring the class label of an unknown pattern but in the WDNN method, a lot of 
trained samples have zero weights, therefore, they are removed automatically from 
the training set. 

In Fig. 3, the average error rates of each method on every four subjects are shown. 
For each classification method, minimum and maximum error rates on the whole 
cases under investigation is also depicted. In Fig. 3(a), the obtained results are shown 
in case of using BP features for classification and Fig. 3(b) displays the same statistics 
in case of using FD features. 
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Table 2. Test error rates for different subjects using different features and classifiers 
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Fig. 3. Average error rates on four subjects obtained by applying compared methods and the 
maximum and minimum error rates achieved by them are shown in (a) for BP features and in 
(b) for FD 

Subject Feature Basic NN SVM FLDA WDNN 

FD 32.16 27.38 28.57 24.34 
L_1 

BP 28.65 23.81 20.24 18.67 

FD 23.98 19.8 9.59 17.39 
O_3 

BP 30.65 26.03 21.92 12.83 

FD 22.43 21.90 17.14 16.48 
O_8 

BP 25.72 21.90 22.86 12.82 

FD 23.26 16.43 16.43 22.37 
G_8 

BP 26.29 21.43 22.86 18.86 
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Table 3. Number of training instances stored in the test phase for NN and WDNN methods 

Subjects Feature Basic NN WDNN 

FD 240 29 
O_3 

BP 240 34 

FD 240 30 
O_8 

BP 240 20 

FD 240 28 
L_1 

BP 240 34 

FD 240 17 
G_8 

BP 240 19 

As it can be seen in Fig. 3(a), in case of using BP features, WDNN performs better 
than Basic NN and SVM, but FLDA is the best method in this case. Note that WDNN 
is still more reliable, since the deviation of error rate is less than FLDA method. In 
Fig. 3(b), in case of using FD features, it can be seen that the proposed WDNN 
method has the highest classification accuracies among the compared classifiers. 
Then, it can predict between the left and right imagery tasks with less error rates. Note 
that in this case, maximum error rate resulted by applying WDNN is still less than 
minimum error rates occurred by the other methods presented in this article. 

6    Conclusion 

In this paper, an innovative approach has been proposed in order to improve the 
classification rate on the left and right imagery tasks in the cue-based BCI. NN is a 
traditional method but it is still a powerful method in various applications. In this 
research, a new version of NN is developed. The noisy instances degrade the 
performance of the nearest neighbor. NN also considers the importance of all the 
stored instances the same, but in fact, their relevancy is not the same. This paper 
presents a novel learning algorithm which is used to assign a local weight to each 
stored instance, which is then contributed in distance measure, with the goal of 
improvement in generalization ability of the basic NN. The learning algorithm 
optimizes the instance weights based on the classification accuracy. The presented 
scheme achieves two purposes at the same time. The classification rate is improved 
by adjusting a weight for each instance and considering it while calculating distance 
measure. It is also faster in predicting between the left and the right tasks for a new 
subject introduced to it. Since, majority of training instances are removed by 
assigning a zero weight to them and will not contributed in classification task. In 
order to evaluate our method, it has been applied on the BP and FD features of two 
imagery tasks of four subjects (L1, O3, O8, and G8) participated in this study. The 
results showed that the proposed method is effective to achieve higher accuracy to 
choose between the left and right tasks. 
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Abstract. Diffusion Tensor MR Imaging (DTI) provides non-invasive
approach to track white matter (WM) trajectories within human brain in
vivo, and thereby facilitates studies of anatomical connectivity between
sub-cortical and cortical regions. This paper presents a probabilistic fiber
tracking framework, which aims to address the two problems in earlier
approaches: first, it does not adopt fractional anisotropy (FA) as the
stopping criteria so that the exploration of cortico-cortical connectivity is
feasible; secondly, fiber tracking process is regularized so that trajectory
with low curvature means high belief of connection between two voxels.

1 Introduction

Diffusion tensor MR Imaging (DTI) fiber tracking algorithms provide poten-
tial for non-invasive reconstructing of white matter (WM) trajectories of human
brain in vivo, as well as assessing changes due to disease, such as multiple sclero-
sis, amyotrophic lateral sclerosis (ALS), stroke, schizophrenia, reading disability,
etc [1]. In early work, one of the most popular approaches is a simple determinis-
tic line propagation technique whereby a single trajectory is propagated bidirec-
tionally from a manually defined seed point by moving in a direction parallel to
principle diffusion direction (PDD) [2,3,4,5,6,7]. However, there are three major
limitations to such a deterministic approach. First, they assume that PDD is the
tangent vector of underlying dominant WM trajectory orientation in each voxel
and estimated from measured DTI data that is discrete, coarsely sampled noisy,
and voxel averaged. Hence, there is uncertainty caused by the noise and artifacts
present in any MR scan and incomplete modeling of diffusion signal [8] associated
with PDD. Furthermore, the reliability of reconstructed WM trajectory cannot
be estimated using such deterministic approaches. Secondly, they cannot handle
a voxel which contains more than one WM trajectories with different orientations
since only one trajectory within each voxel is presumed by single tensor model.
Especially, at millimeter-scale resolution of DTI the number of such voxels may
be considerate given widespread divergence and convergence of WM trajectories
[9,10]. And such voxels manifest by the form of oblate diffusion tensor (pancake-
like shape) [11]. By examining DTI data of single subject, about 9.97% of within
brain voxels possibly does not contain one WM trajectory. Third, most of them
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adopt fractional anisotropy (FA) as the stopping criteria. When FA is smaller
than a certain value, fiber tracking process terminates making exploration of
cortico-cortical connectivity impossible since FA near sub-cortical and cortical
regions is very small. Therefore, these deterministic fiber tracking approaches
work best on datasets with high FA and without voxel containing multiple WM
trajectories. In addition, they cannot reveal sufficient and reliable information
for analysis of human brain anatomical connectivity.

More recently, several probabilistic fiber tracking approaches [8,12,13,14] have
been proposed to address the three limitations to deterministic approaches by
modelling uncertainty associated with PDD. Often, a probability density func-
tion (PDF) derived from either raw diffusion weighted images [8,14] or estimated
diffusion tensor [12,13] for each voxel, which estimates the probability of the
orientation of local trajectories in all possible directions, is proposed. Then, sim-
ple line propagation is carried out using derived PDF of seed point as well as
those voxels that the reconstructed trajectory passes through. This process is
repeated in Monte-Carlo fashion to generate adequate number of WM trajecto-
ries to represent PDF of trajectories starting from seed point. Finally, statistical
connectivity map is produced from reconstructed trajectories to estimate prob-
ability of connection from seed point to any other voxels. In [8,13,14], such a
map is estimated using Probabilistic Index of Connectivity (PICo), which is cal-
culated as the number of trajectory passes through the region divided by the
total number of trajectory reconstructed. This index is reasonable estimation of
belief that there is a connection between two regions. And it is also adopted in
this paper. Further normalization on this index is applied making comparison of
connectivity starting from different regions feasible.

By studying previous probabilistic approaches, it was realized that there is
still one problem in them, high curvature of reconstructed trajectories. It is be-
lieved that trajectory with low curvature means high belief of connection between
two voxels. The factors that determine curvature of reconstructed 3D piecewise
trajectory are turning angel (i.e. inverse cosine of dot product of previous di-
rection and current direction vectors) and step size at each propagation step.
In deterministic approach, low curvature is achieved by terminating fiber track-
ing process when turning angel is too high at the expense of coverage area of
reconstructed trajectories. In probabilistic approach [8,12,13], such a priori in-
formation is not incorporated into PDF of local trajectory orientation. Therefore,
most of reconstructed trajectories are irregular. In [14], Friman et al. considered
the trajectory as first-order Markov Chain to minimize the probability of occur-
rence of large turning angel. However, step size was not taken into consideration.
Furthermore, first-order Markov Chain is insufficient to minimize curvature, es-
pecially when trajectory passes through regions with low FA.

Inspired by work [14], a new probabilistic fiber tracking approach is presented
in this paper. The approach models the trajectory as high order Markov Chain,
which means that current direction is determined by several previous directions.
At each propagation step, unlike previous approaches, both the current direction
and step size are sampled. This new approach was applied to young normal DTI
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data to study trajectories passing through splenium of corpus callosum, then
compared with [13].

2 Method

The reconstructed WM trajectory x is a piecewise continuous 3D space curve
which is considered as a sequence of space vector {xk, k = 1, 2, ..., N}. The
reconstruction process can be modelled as sequential sampling using equation (1)

xk+1 = xk + αkνk (1)

where νk and αk are the direction vector and step size of kth sampling step,
respectively.

WM trajectory x is modelled as mth order Markov chain to regularize the
reconstructed trajectory, that is, (νk, αk) depend on previous m sampling steps.
In this paper, Monte Carlo estimation of anatomical connectivity from region A
to region B θAB = EπhAB(x) is of interest, where x is a random WM trajectory
sampled from the distribution π(x) can be expressed as:

π(x) = P (ν1, α1|y, D̂)
m∏

l=2

P (νl, αl|νl, ..., νl−1, y, D̂)

N∏
k=m+1

P (νk, αk|νk−1, ..., νk−m, y, D̂) (2)

where D̂ is estimated diffusion tensor using multivariate linear regression, and y
is logarithm of raw diffusion weighted images (DWI).

In [8,14], posterior PDF of PDD νk and αk is derived from DWI using two-
tensor model, which assumes two fiber trajectories with different orientation
present within each voxel. Although problem of incomplete modelling in single
tensor model is partially resolved, more data acquisitions as well as computa-
tion effort are required since two-tensor model involves more latent parameters.
Considering limited acquisition time and limitations inherent to MR Imaging
scanner (i.e. millimeter-scale resolution of DTI data), single tensor model is a
reasonable compromise to reflect the averaged diffusion coefficient over a voxel
in any direction of space. Therefore, posterior PDF of PDD νk and αk is derived
from estimated diffusion tensor D̂. Any additional trajectory within a voxel is
simply considered as uncertainty. And νk’s posterior distribution becomes dis-
perser when multiple trajectories present within a voxel. Furthermore, instead
of constant step size, it is adaptable so that the lower the uncertainty is, the
larger it is.

The anatomical connectivity from region A to region B is measured using
Probabilistic Index of Connectivity in [8,13,14] by first sampling a large number
of trajectories starting from region A, and calculating the proportion of trajec-
tories that pass through region B. This measure indicates the belief that there



394 B. Zheng and J.C. Rajapakse

is connection from region A to region B. Note that this index is not symmet-
ric. To compute connectivity from region B to A, sampling trajectories starting
from region B needs to be performed. This index of connectivity is not compara-
ble suppose the starting region is different. Therefore, we proposed a coefficient
associated with starting region, which measures the true relative number of tra-
jectories passing through the region. And if the starting region is gray matter
(GM), the volume of the region is a good candidate. Here, we assume the neurons
are uniformly distributed in the region. If the starting region is WM, average FA
is chosen. Currently, only comparison of connectivity starting from homogeneous
brain tissue is possible. The connectivity function hAB(x) is:

hAB(x) =

{
cA If x passes through region B

0 otherwise
(3)

2.1 Diffusion Tensor Estimation

DT-MR Imaging consists of acquiring DWI Ii, i = 1, 2, . . . , K;K ≥ 6, which mea-
sures a single scalar apparent diffusion constant (ADC) along different diffusion-
sensitizing directions gi, i = 1, 2, . . . , K;K ≥ 6. In DT-MR Imaging, diffusion
tensor D that characterizes anisotropic water diffusion within a macroscopic
voxel is estimated from the set of at least 6 DWIs with non-collinear and non-
coplanar diffusion-sensitizing directions, which are uniformly distributed on a
unit sphere surface, plus the non-diffusion weighted image I0 (i.e. b = 0) using
equation (4) [16,17] via multivariate linear regression (equation (5)):

Ii = I0 exp(−bgT
i Dgi) (4)

Y = Xβ + ε, ε N(0, σ2) (5)

where

Yi = ln Ii − ln I0

X = −b

⎛
⎜⎜⎜⎝

g2
1x g2

1y g2
1z 2g1xg1y 2g1xg1z 2g1yg1z

g2
2x g2

2y g2
2z 2g2xg2y 2g2xg2z 2g2yg2z

...
...

...
...

...
...

g2
Kx g2

Ky g2
Kz 2gKxgKy 2gKxgKz 2gKygKz

⎞
⎟⎟⎟⎠

β = [Dxx Dyy Dzz Dxy Dxz Dyz]T

where b-value renders the amount of diffusion weighting.
Then eigenvalues, eigenvectors, and FA were determined. A mask was also

generated based on FA map to prevent fiber tracking outside brain.
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2.2 Estimation of Joint Posterior Distribution

This probability relates estimated diffusion tensor D̂ to WM trajectory local
direction νk and αk. Assume that νk and αk are conditionally independent, the
joint posterior distribution was decomposed into two distributions (equation (6)).
The key point is to introduce the a priori knowledge of low curvature of trajec-
tories into posterior PDF. By applying Bayes’ theorem, such a priori knowledge
was incorporated in the form of prior distribution P (νk|νk−1, . . . , νk−m) (equa-
tion (7))

P (νk, αk|νk−1 . . . νk−m, Y, D̂) = P (αk|νk, νk−1 . . . νk−m, Y, D̂)
P (νk|νk−1 . . . νk−m, Y, D̂) (6)

P (νk|νk−1 . . . νk−m, Y, D̂) =
P (Y |νk . . . νk−m, D̂)P (νk|νk−1 . . . νk−m, Y )

P (Y |νk−1 . . . νk−m, D̂)
(7)

Since single tensor model was used here, there are no other latent parameters
besides estimated diffusion tensor D̂. Assume Y depends on current propagation
direction only; the equation (7) can be further simplified into:

P (νk|νk−1 . . . νk−m, Y, D̂) =
P (Y |νk, D̂)P (νk|νk−1 . . . νk−m)∫
νl

P (Y |νl, D̂)P (νl|νl−1 . . . νl−m)
(8)

It is impossible to evaluate integral term of equation (8) in continuous domain.
Hence, νk is discretized into a large number of samples by uniformly sampling the
sphere to transform integration into summation. The multivariate linear regres-
sion model assumes Gaussian distributed noise. The likelihood of Y P (Y |νk, D̂)
was modelled as:

P (Y |νk, D̂) =
K∏

i=1

1
σ̂
√

2π
exp(− (Yi + bgT

i R(νk)D̂R(νk)T gi)2

2σ̂2
) (9)

where R(νk) is a rotation matrix that rotates PDD to νk; the noise variance σ2

was estimated using equation (10).

σ̂2 =
∑K

i=1(Yi + bgT
i D̂gi)2

K − 6
(10)

The prior distribution P (νk|νk−1 . . . νk−m) follows:

P (νk|νk−1 . . . νk−m) ∝
{ 〈νk,

xk−xk−m

‖xk−xk−m‖ 〉 〈νk,
xk−xk−m

‖xk−xk−m‖ 〉 > 0

0 otherwise
(11)

This prior distribution gives the direction made up of low curvature trajectory
high probability. In addition, the constraint in equation (11) is to avoid backward
tracking.
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Distribution for step size P (αk|νk, νk−1 . . . νk−m, D̂) follows Gaussian distri-
bution with mean cFAk〈νk, xk−xk−m

‖xk−xk−m‖ 〉 + b (where b and c are constant) and
standard deviation σ. Therefore, when trajectory passes through regions with
high FA and turning angle is small, the probability of αk being large is high.

2.3 Sampling and Re-sampling Trajectory

The simple line propagation approach used for sampling trajectory is called
Fiber Assignment by Continuous Tracking (FACT) described in our previous
work [18]. In brief, starting from user-defined seed voxel, fiber trajectory is re-
constructed from the diffusion tensor by propagating forward and backward,
following the PDD. As given in equation (1), suppose the current point is xk,
the next point xk+1 along the path is calculated by adding the normalized PDD
νk multiplied by the step size αk, where (νk, αk) is randomly generated using
its joint posterior distribution. The tracking process is terminated when the net
change in direction within a single voxel exceeded ±π/2 [13], or the boundary of
brain is reached. This is to compare our results with [13], since different stopping
criterion may give different results. Note that, diffusion tensor D is discrete, but
continuous tensor field is required in propagation process. A statistical interpo-
lation approach proposed by [8] is adopted to interpolate diffusion tensor field.
In this statistical framework, diffusion tensor at point xk is assigned one of its
nearest neighbors tensor values. The probability of picking one neighbor is in-
versely proportional to the distance between point xk and center of the neighbor.
To estimate the connectivity from starting point to other regions, re-sampling of
generated WM trajectories is performed to give Monte Carlo estimation as well
as its standard error.

3 Results

The proposed probabilistic fiber tracking approach was carried out on real DTI
data. DTI data consists of 15 DWIs and one non-diffusion weighted image. Im-
ages were obtained from one healthy volunteer on a Philips 3T MRI scanner
using pulsed-gradient echo planar sequence with the following parameters: field
of view (FOV) = 230mm; TR = 3700ms; TE = 56ms; 256 × 256 acquisition
matrix; slice thickness = 3mm; b factor = 800smm−2. All scans were approved
by ethics committee of National Neuroscience Institute, Singapore.

To validate the results, the corpus callosum, which is the largest fiber bundle
interconnecting the two cerebral hemispheres, was chosen to be studied, since its
topography has been well defined in literature (e.g. [19,20,21]). The seed point
(Fig. 1) was placed on the midline in splenium (posterior part) of corpus callosum
and 1000 trajectories were generated for first-order, third-order and fifth-order
Markov Chain, respectively. We also defined a region of interest (ROI) (Fig. 1)
composed of cuneus, superior occipital gyrus, middle occipital gyrus to study
the anatomical connectivity from splenium of corpus callosum to occipital lobe.
As suggested by previous qualitative and quantitative studies [14,19,20,21], it
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Fig. 1. Fractional Anisotropy map at middle axial slice. The red arrow shows the seed
point; the blue rectangle shows region of interest.

is expected the connectivity is nearly 1 as most of fiber trajectories through
splenium span out to occipital lobe, and a few, named tapetum, extend laterally
on left side of human brain into the inferior temporal lobe.

In most previous probabilistic fiber tracking approaches, constant step size
was used. And only direction vector was sampled at each propagation step.
Compared to one of previous approach [13] (referred to as GJM method), the
proposed method which incorporates adaptive step size gives less average num-
ber of sampling steps (table 1). Hence, the adaptive step size ensures effective
sequential sampling of fiber trajectory. Furthermore, GJM method did not in-
volve any a priori information of direction vector which controls the curvature
of sampled fiber trajectories. Consequently, probability of violation of stopping
criterion due to noise or partial volume effect before reaching ROI is higher than
proposed method. In conclusion, a priori information helps reduce curvature
of sampled fiber trajectories and fiber tracking process pass through noisy or
branching regions. This is also confirmed by average curvature and connectiv-
ity shown in table 1. Since many sampled fiber trajectories by GJM method
stops before they enter into ROI, the connectivity index is much lower than pro-
posed method. In addition, high order Markov Chain does not necessarily give
lower curvature. That curvature of sampled trajectories modelled by third and
fifth order Markov Chain is higher than those modelled by first order Markov

Table 1. Comparison of characteristics of generated fiber trajectories by different
method

Method Step Curvature Connectivity

GJM Method 186.21 ± 84.49 0.1208 ± 0.0914 0.4807 ± 0.0153
1st Markov Chain 128.42 ± 53.33 0.1048 ± 0.0429 0.9074 ± 0.0085

3rd Markov Chain 148.33 ± 64.15 0.1148 ± 0.0439 0.9761 ± 0.0049

5th Markov Chain 148.93 ± 60.57 0.1127 ± 0.0411 0.9812 ± 0.0044
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(a) (b)

(c)

Fig. 2. Top view of generated fiber trajectories (a) 3rd order Markov Chain; (b) 5th
order Markov Chain; (c) GJM Method

Chain, since high order Markov Chain makes violation of stopping criterion more
difficult and trajectories near sub-cortical and cortical regions are more curved
in nature.

Fig. 2 shows top view of sampled fiber trajectories by proposed method (Fig.
2(a) and (b)) and GJM method (Fig. 2(c)). Given same number of samples, the
proposed method discovered more branches than GJM method. The proposed
method found trajectories that project into inferior temporal lobe (i.e. tapetum),
which were not found by GJM method. Hence, the convergence rate of PDF
in proposed method is possibly faster than PDF in GJM method. And fewer
samples are required to estimate the anatomical connectivity. In conclusion, the
proposed method gives better estimation of PDF of fiber trajectory as well as
anatomical connectivity.

Although high order Markov Chain is very effective in fiber tracking process,
higher order does not mean better propagation results. The order of Markov
Chain depends on the length of trajectory as well as its shape. If the trajectory
is not so long and is very straight, lower order is sufficient to regularize the
trajectory. Furthermore, if the trajectory is curved, high order may possibly
distort its shape. To study fiber bundles (consist of thousands of trajectories),
Monte-Carlo simulation with different order of Markov Chain can be carried out
to reveal different levels of information. For fiber trajectories passing splenium
of corpus callosum, 3 is an appropriate order. There is no significant difference
of characteristics of sampled fiber trajectories between third and fifth order.
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4 Conclusion

A new probabilistic fiber tracking approach allowing effective regularization of
reconstructed trajectories as well as exploration of cortico-cortical anatomical
connectivity was proposed. The advantage of our approach over previous ones is
that both turning angel and step size are taken into consideration to regularize
reconstructed trajectories. Furthermore, there is no need to specialize threshold
for FA or turning angel, which is usually difficult to determine, to terminate
fiber tracking process. This helps fiber tracking process passes through noisy or
branching regions and propagates into sub-cortical and cortical regions so that
estimation of cortico-cortical anatomical connectivity is feasible.

Future work may include development of technique to fuse anatomical con-
nectivity with function connectivity derived from fMRI.
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Abstract. A method for automatic classification of computed tomography (CT) 
brain images of different head trauma types is presented in this paper. The 
method has three major steps: 1. The images are first segmented to find poten-
tial hemorrhage regions using ellipse fitting, background removal and wavelet 
decomposition technique; 2. For each region, features (such as area, major axis 
length, etc.) are extracted; 3. Each extracted feature is classified using machine 
learning algorithm; the images are then classified based on its component re-
gions’ classification. The automatic medical image classification will be useful 
in building a content-based medical image retrieval system. 

1   Introduction 

Due to the advances of multi-slice Computed Tomography (CT) Scan with up to 64 
slices per scan, a huge amount of CT images are produced in modern hospitals. To-
day, CT scan images are in the standard DICOM (Digital Imaging and Communica-
tions in Medicine) format which incorporates textual information together with the 
images. Display and retrieval of CT scan images are via PACS (Picture Archives and 
Communication System) hardware [1]. However with such standards and hardware, 
the CT scan images currently can only be retrieved using patient names or identity 
card numbers.  To retrieve an image pertaining to a particular anomaly without the pa-
tient name is literally like looking for a needle in a haystack. In the domain of CT 
brain images, very often doctors already overloaded with day-to-day medical consul-
tation simply could not remember patients’ names when they need to refer to cases of 
certain type of brain trauma seen before and as such valuable information are lost in 
the sea of raw image pixels.  

However, if the CT brain images are automatically classified according to trauma 
types and incorporated to the medical image search system, then the system with search 
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functions not just by patients’ names but by trauma types provides solution to the  
problem. In this paper, we propose a method to classify CT brain images of head trauma 
automatically and quickly, so that it facilitates the building of such search systems. 

Head trauma has the following major types [2]: epidural hemorrhage1 (EDH), acute 
subdural hemorrhage (SDH_Acute), chronic subdural hemorrhage (SDH_Chronic), 
intracerebral hemorrhage (ICH), intraventricular hemorrhage (IVH) and subarachnoid 
hemorrhage (SAH). In this paper, we focus on classification of EDH, SDH_Acute and 
ICH, for they are the dominant types in most head trauma cases. Our images are from 
CT brain scans performed in the two-year period of 2003 and 2005 as a result of hos-
pital admission for mild head injured patients in National Neuroscience Institute, Tan 
Tock Seng Hospital [3]. Some of the mild head injuries were later found to be insig-
nificant with no hemorrhage detected.  Such cases are treated as belonging to the 
“normal” class in our training data. 

The rest of the paper is organized as follows. In section 2, we will present our 
method of automatic classification which basically consists of three phases: namely, 
pre-processing, feature extraction and classification.  In section 3, we will discuss our 
experimental results involving machine learning and validation.  Finally, section 4 
concludes the paper with our future works. 

2   A Method for Automatic Classification of CT Brain Images 

Our proposed method to automatically classify CT brain images consists of three 
phases: preprocessing, feature extraction and classification. In the preprocessing 
phase, we segment the hemorrhage regions from the CT brain image using ellipse fit-
ting [4], background removal and wavelet decomposition technique [5, 6]. The seg-
mented result is a binary image with potential hemorrhage regions in white and the 
others in black. Then for each of the potential hemorrhage regions, we extract infor-
mation about size, shape and position, and create a feature vector accordingly. Lastly, 
we use a machine learning algorithm to classify the potential hemorrhage regions into 
different hemorrhage types or normal regions according to the extracted features. The 
CT brain images are then classified according to the classification of its potential 
hemorrhage regions.  

2.1   Preprocessing 

Preprocessing algorithm consists of 4 steps. Step one removes the skull and fits an el-
lipse to the skull to construct an “interior region”, which is the brain inside the skull. 
Step two removes the gray matter. Step three uses a wavelet decomposition to reduce 
noise and set a threshold automatically to identify the hemorrhage regions. The last 
step generates a binary image containing the hemorrhage regions in white and the 
others in black. 

Step 0: Input CT brain image in JPEG format of dimension 512×512. (Figure 1) 
                                                           
1 The terms “hemorrhage” and “hematoma” are often used interchangeably. In this paper, we 

use “hemorrhage” for consistency. 
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Fig. 1. Image I, Original raw input image; left: image; right: intensity distribution2 

Step 1: Remove the skull and segment the “interior region” 
The skull is in white color, whose intensity is above 250 in a gray scale map. 

Hence, we simply treat those pixels with intensity 250 and above as the skull.  The in-
terior region refers to the brain content inside the skull. Since most traumas are diag-
nosed according to blood clots or edema inside the skull, it is important to segment 
the interior region. Firstly, we do a boundary detection based on the skull removed. 
The boundary contains points with intensity above 250, which belong to the skull. 
Note that there are two other regions that are also in white color. These two regions 
belong to the CT scan device. However, since they are much smaller than the skull, 
they can be removed by doing a simple area comparison. Next, we do an ellipse fit-
ting on the boundary points, and compute the center (Xc, Yc), the major axis, the minor 
axis, and the parameters of the ellipse. There are 6 parameters, a,b,c,d,e and f, and 
thus the ellipse has an equation of the following form: 

022 =+++++ feydxcybxyax  

Hence, a point [x, y] given to the equation that has a result less than zero is inside 
the ellipse. Finally, we segment the interior points based on the following rules on the 
original image I.  

1. The point should be inside the ellipse; 
2. The point should be set apart from the center of the ellipse with a distance less than 

80% of the average of the major and minor axes of the ellipse. 
3. Its intensity is between 10 and 250. 

We denote the interior image to be T0. (Figure 2) 

 

Fig. 2. Image T0, interior region; left: image; right: intensity distribution 

                                                           
2 The intensity below 10 (background) and above 250 (skull) are not shown in the histogram so 

that the intensity of inner part of the brain is shown in more detail. 
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Step 2: Remove the gray matter 
Most parts of the content inside the skull are the gray matter. In the histogram of 

intensity on T0, the peak corresponds to the gray matter. (Figure 2) Hence, a simple 
subtraction off the peak intensity from T0 will give us an image with the gray matter 
removed. We call it T1. (Figure 3) 

 

Fig. 3. Image T1, gray matter removed; left: the image; right: intensity distribution 

Step 3: Reduce noise 
There is much noise as white dots or tiny fragments produced in T1, because we 

subtract only a single intensity value from various parts of the gray matter. A second 
level 2D Biorthogonal wavelet transform is used to reduce the noise [5, 6]. We finally 
get the image with reduced noise but more distinguishable diseased parts. We denote 
the resultant image to be T2. (Figure 4) 

 

Fig. 4. Image T2, noise reduced; left: image; right: intensity distribution 

Step 4: Generate a binary image of hemorrhage 
After the preprocessing, we can define thresholds according to the intensity distri-

bution of image T2. We set the hemorrhage threshold to be the median of the peaks 
obtained from the wavelet transform. Finally we get a binary image T3. (Figure 5) 

 

Fig. 5. Image T3, each white pixel group represents a possible hemorrhage region of the image 
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2.2   Feature Extraction 

As human doctors use size, shape and position of the potential hemorrhage region to 
classify them, we need quantifiable features that describe the size, shape and position 
for antomatic classification. For each potential hemorrhage region, we use the Matlab 
function regionprops [7] to extract the area, major and minor axis lengths, eccentric-
ity, solidity and extent. Also, features for the skull and the background are extracted 
from the labeled skull and background regions [8]. These features describe the size, 
shape and position of the potential hemorrhage region; therefore, they are useful for 
classification. The class of each feature vector is one of the following values: EDH, 
SDH_ Acute, ICH and normal. All features are described in Table 1. 

Table 1. Features extracted from each region 

 Name Description[7] Example 
1 Area The actual number of pixels in the region. 607 
2 Major axis 

length 
The length (in pixels) of the major axis of the ellipse 
that has the same second-moments as the region. 

38.1135 

3 Minor axis 
length 

The length (in pixels) of the minor axis of the ellipse 
that has the same second-moments as the region. 

23.5155 

4 Eccentricity The eccentricity of the ellipse that has the same sec-
ond-moments as the region. The eccentricity is the ra-
tio of the distance between the foci of the ellipse and 
its major axis length. 

0.7295 

5 Solidity The proportion of the pixels in the convex hull that are 
also in the region. Computed as Area/ConvexArea3. 

0.8772 

6 Extent The proportion of the pixels in the bounding box that 
are also in the region. Computed as the area divided 
by area of the bounding box. 

0.6485 

7 Skull Whether the region is adjacent to skull or not. false 
8 Background Whether the region is adjacent to background or not. true 

2.3   Classification 

According to the features extracted in section 2.2, we classify the regions into five cate-
gories: EDH, SDH_ Acute, ICH, other and normal, where the first three classes refer to 
the three types of hemorrhages we focus on, the other refers to the remaining types of 
hemorrhage, and normal means that the region is not a hemorrhage. For example, the 
potential hemorrhage regions of Figure 5 classified as ICH are shown in Figure 6. 

As there may be more than one type of hemorrhage present in a brain CT image, 
the class for each image cannot have only one of the class values as the regions have. 
Instead, the class for each image is a boolean vector <EDH, SDH_ Acute, ICH, nor-
mal>, where each boolean value indicates the presence of certain type of hemorrhage.  
 

                                                           
3 The number of pixels in convex image, which is the convex hull, with all pixels within the 

hull filled in. 
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Fig. 6. Each white pixel group represents an ICH region of the image 

The class of the image is classified according the classifications of its regions. If the 
regions are classified as some type(s) of hemorrhage (EDH, SDH_Acute, or ICH), the 
image is also classified as the same type(s) of the hemorrhage(s). Otherwise if all re-
gions are classified as normal, the image itself is also classified as normal. 

3   Experimental Results 

We obtained 35 CT brain images (15 EDH, 9 SDH_Acute, 6 ICH and 5 normal) be-
longing to 12 patients from the National Neuroscience Institute, Tan Tock Seng Hos-
pital, Singapore. After preprocessing, we obtained 818 potential hemorrhage regions 
(15 EDH, 19 SDH_Acute, 47 ICH and 737 normal). 

3.1   Classification of Potential Hemorrhage Regions 

We used J48 classifier, a decision tree classifier based on C4.5 [9], from WEKA 
[10] to train and test the region features. 10-fold cross validation was used. The 
average accuracy (correctly classified regions / all regions) is 93.0%. As there are 
many more normal class cases than the other classes, the data is highly imbal-
anced, which causes high accuracy for normal class and relatively lower accuracy 
for other classes. The detailed testing results for each class are reported as shown 
in Table 2. 

Table 2. Detailed testing results for each class 

 EDH SDH_Acute ICH normal 
Precision 60.0% 53.8% 60.0% 95.9% 
Recall 60.0% 36.8% 44.7% 98.2% 

 
The decision tree obtained from J48 is shown in Figure 7. The knowledge represented 
by the decision tree is actually very close to the doctor’s knowledge in classifying po-
tential hemorrhage regions. For example, if the region’s area is less than or equal to 
2891 pixels (6.89cm2) and greater than 91 pixels (0.22cm2), and the eccentricity is 
less than or equal to 0.9426 (the greater the eccentricity is, the elongated is the re-
gion), and the region is not adjacent to skull, then the region is ICH. This is also a 
typical rule for doctors to recognize ICH manually.  
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Area <= 2891 
|   Eccentricity <= 0.9426 
|   |   skull = false 
|   |   |   Area <= 91 
|   |   |   |   Extent <= 0.6485: normal  
|   |   |   |   Extent > 0.6485: ICH  
|   |   |   Area > 91: ICH  
|   |   skull = true 
|   |   |   Area <= 1263: normal  
|   |   |   Area > 1263 
|   |   |   |   Eccentricity <= 0.9322: EDH  
|   |   |   |   Eccentricity > 0.9322: SDH_Acute  
|   Eccentricity > 0.9426: normal  
Area > 2891 
|   Eccentricity <= 0.8579: ICH  
|   Eccentricity > 0.8579 
|   |   Area <= 7185 
|   |   |   Extent <= 0.1852 
|   |   |   |   MajorAxisLength <= 274.1822: EDH  
|   |   |   |   MajorAxisLength > 274.1822: SDH_Acute  
|   |   |   Extent > 0.1852: SDH_Acute  
|   |   Area > 7185: EDH  

Fig. 7. Decision tree obtained from the training data using the J48 classifier 

3.2   Classification of Images 

The classification of the image is considered as: 1. correct, if the predicted class(es) 
and the actual class(es) are exactly the same; 2. partially correct, if the actual class(es) 
is/are included in the prediction, but other class(es) is/are also predicted; 3. incorrect, 
if the predicted class(es) is different from the actual class. Among the 35 images, 18 
are classified correctly, 6 are classified partially correctly, and 11 are classified  
incorrectly. 

4   Conclusion 

In this paper, we propose a method to classify CT brain images of head trauma auto-
matically and quickly. The method consists of three phases: preprocessing, feature ex-
traction and classification. In the preprocessing phase, we segment the hemorrhage 
regions from the CT brain image using ellipse fitting, background removal and wave-
let decomposition technique. The segmented result is a binary image with potential 
hemorrhage regions in white and the rest in black. Then for each of the potential hem-
orrhage regions, we extract information about its size, shape and relative location, and 
create a feature vector. Lastly, we use machine learning algorithms to classify the po-
tential hemorrhage regions into different hemorrhage types or normal regions accord-
ing to the extracted features. The CT brain images are then classified according to the 
classification of its potential hemorrhage regions. 

The fast and scalable automatic medical image classification can help to build a 
medical image search system according to the syndrome types (in our case of CT 
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brain images, the syndrome types are head trauma types) and facilitate doctors’ re-
search on certain syndrome as well as education for medical profession.  

In our future work, we will extend the classification types to include other head 
traumas. We will also explore other machine learning algorithms and compare their 
classification results.  Finally, we will do text mining to extract further information 
from the text of neuroradiologists’ report to find more features for classification. 
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Blanco, Ángela 178
Bodén, Mikael 337
Bong, William 11
Boone, Edward L. 60
Brusic, Vladimir 337

Chan, Laiwan 218
Chaturvedi, Iti 300
Chen, Joanne 166
Chen, Shu-An 132
Chetty, Madhu 84, 264
Coppel, Ross 274

de las Rivas, Javier 178
Dehzangi, Omid 378
Deng, Xuegong 51
Deng, Xuemei 51
Ding, Yongsheng 98
Dooley, Laurence S. 84, 274
Dufour, Alexandre 356

Farzad, Neda 401
Feng, Lin 349
Fl̊a, Tor 158

Genovesio, Auguste 356
Gondal, Iqbal 274
Gong, Tianxia 401
Grailhe, Regis 356
Greene, Casey S. 30
Gromiha, M. Michael 120, 148

Hajela, Krishnan 108
Havukkala, Ilkka 51
He, Yulan 198
Hoque, Md Tamjidul 84
Hung, Hao-Geng 132

Jahromi, Mansoor Zolghadri 378

Khan, Nawaz 189
Kokol, Peter 189
Kumar, Arun 368
Kurzynski, Marek 311
Kuznetsov, Vladimir 166
Kwoh, Chee Keong 198

Lee, Cheng Kiang 401
Lee, JooHyun 356
Lefevre, Christophe 286
Lian, Zhi-Chao 11
Liang, Yan-Chun 11
Lim, Chu Sing 323
Lin, Feng 19, 286
Lin, Valerie C.-L. 19
Ling, Maurice HT 286
Liu, Ruizhe 401
Luthra, Pratibha Mehta 41

MacIntyre, John 206
Mao, Kezhi Z. 230
Mart́ın-Merino, Manuel 178
Maskell, Douglas L. 11
McGarry, Ken 206
Mok, Goh Kiah 274
Moore, Jason H. 30
Mundra, Piyushkumar A. 242

Nicholas, Kevin R. 286

Oja, Merja 253
Oliver, Timothy F. 11
Orlov, Yuriy 166
Ou, Yu-Yen 132

Pan, Quan 71
Pang, Boon Chuan 401
Pearson, Caroline 60
Pei, Zhi-Li 11
Perumal, Deepak 323
Prakash, Amresh 41

Rajapakse, Jagath C. 242, 300, 368, 391
Rajapakse, Menaka 349



410 Author Index

Ram, Ramesh 264
Ramani, Ashwini Kumar 108
Ramraghubir 41
Ricanek Jr., Karl 60

Sakharkar, Meena Kishore 300, 323
Sarfraz, Mohammad 206
Schmidt, Bertil 11
Sehgal, Muhammad Shoaib B. 274
Shahab, Atif 166
Shao, Chung-Lu 132
Shi, Jianyu 71
Simmons, Susan J. 60
Singh, Siddharth 108
Stepanova, Maria 19
Stiglic, Gregor 189

Taguchi, Y.-h. 120
Taheri, Shahram 378
Tan, Chew Lim 401
Tang, Suisheng 401
Tang, Wenyin 230

Tang, Xu-Ning 11
Teng, Li 218
Tian, Qi 401

Verlic, Mateja 189
Vincent, Nicole 356

Wang, Hao 198
Wei, Rong 98
White, Bill C. 30

You, Liwen 337

Zhang, Ping 337
Zhang, Shaowu 71
Zhang, Tongliang 98
Zhang, Yanning 71
Zhang, Zhuo 401
Zheng, Bo 391
Zhou, Deyu 198
Zhou, Jiangtao 166
Zolnierek, Andrzej 311


	Title Page
	Preface
	Organization
	Table of Contents
	Automated Methods of Predicting the Function of Biological Sequences Using GO and Rough Set
	Introduction
	Gene Ontology
	Basic Theory About Rough Set

	Relative Work and Background
	Rough Set-Based Method
	Data Collection
	Accuracy Metrics
	Preparation
	Algorithm

	Simulation Results and Analysis
	Conclusions
	References

	C-Based Design Methodology for FPGA Implementation of ClustalW MSA
	Introduction
	Motivation

	ClustalW MSA First Stage: Distance Matrix
	Design and Implementation
	Performance Evaluation
	Conclusion
	References

	A Two-Phase ANN Method for Genome-Wide Detection of Hormone Response Elements
	Introduction
	Methods
	Data Preparation
	Modeling of HREs with a Feed-Forward Neural Network
	Classification of Respective HREs with a Recurrent Neural Network
	Hardware Acceleration

	Results
	HRE Classification

	Discussion and Conclusion
	References

	An Expert Knowledge-Guided Mutation Operator for Genome-Wide Genetic Analysis Using Genetic Programming
	Introduction
	Concept Difficulty
	Genetic Programming and Mutation

	Genetic Programming Methods
	Expression Tree Representation
	Fitness Function
	A Sensible Mutation Operator
	Parameter Settings

	Multifactor Dimensionality Reduction (MDR) for Attribute Construction
	Expert Knowledge from Tuned ReliefF (TuRF)
	Data Simulation and Analysis
	Experimental Results
	Discussion and Conclusion
	References

	cDNA-Derived Amino Acid Sequence from Rat Brain A2aR Possesses Conserved Motifs PMNYM of TM 5 Domain, Which May Be Involved in Dimerization of $A_{2a}R$
	Introduction
	Materials and Methods
	Dissection and Isolation of Rat Brain Striatal Tissues
	Total RNA Isolation
	DNase I Treatment
	mRNA Purification and Quantitation
	Primer Designing
	RT-PCR Amplification
	Sequence Analysis

	Results and Discussion
	RT-PCR Amplification of Adenosine A2a Receptor cDNA Encoding TM 5 Domain
	Sequence Analysis of Rat Brain Adenosine A2a Receptor cDNA
	Multiple Sequence Alignment of cDNA Derived Amino Acid Sequence

	References

	Strong GC and AT Skew Correlation in Chicken Genome
	Introduction
	Data
	Results
	AT and GC Skew Correlations

	Discussion
	References

	Comparative Analysis of a Hierarchical Bayesian Method for Quantitative Trait Loci Analysis for the Arabidopsis Thaliana
	Introduction
	Arabidopsis Thaliana

	Methods
	Simulations
	Results
	Conclusions
	References

	Using Decision Templates to Predict Subcellular Localization of Protein
	Introduction
	Database
	Representation Methods
	Multi-scale Energy
	Moment Descriptor
	Amino Acid Composition Distribution

	Classification and Assessment
	Support Vector Machines
	Multiple Classifier System and Decision Template
	Prediction of Assessment

	Experiment and Discussion
	Comparison with the Former Methods
	The Performance Analysis of DT

	Conclusion
	References

	Generalized Schemata Theorem Incorporating Twin Removal for Protein Structure Prediction
	Introduction
	Twins in GA Population
	Preliminaries of Schemata Theorem
	Limitations of the Schemata Theorem
	Generalization of the Schemata Theorem
	Simulation and Experimental Results
	Conclusion
	References

	Using Fuzzy Support Vector Machine Network to Predict Low Homology Protein Structural Classes
	Introduction
	Methods
	Protein Sequence Representation
	Fuzzy Support Vector Machine
	FSVM Network
	Dataset and Measure Methods

	Results and Discussion
	Conclusions
	References

	SVM-BetaPred: Prediction of Right-Handed ß-Helix Fold from Protein Sequence Using SVM
	Introduction
	Materials and Methods
	Training and Testing Data Set
	Evaluation Data Set
	Prediction Data Set
	Support Vector Machine
	SVM Features
	Kernel and Parameters
	SVM Input
	SVM Output
	Performance Evaluation
	Position Specific Scoring Matrix

	The Algorithm
	Rung Prediction in Protein Sequence
	Log Odds Score for Wrap
	Completing the Parse
	$\alpha$-Helix Filter

	Results
	Recognition of Unknown Sequences

	Discussions
	References

	Protein Fold Recognition Based Upon the Amino Acid Occurrence
	Introduction
	Materials and Methods
	Results
	Accuracy of Discrimination Using Amino Acid Occurrence and Other Features
	SCOP
	CATH

	Discussion
	Why Does Occurrence Work So Well?
	Folds vs Structural Alignments

	Conclusion
	References

	Using Efficient RBF Network to Identify Interface Residues Based on PSSM Profiles and Biochemical Properties
	Introduction
	Constructing the Radial Basis Function Network
	Traditional Least Mean Square Error Method
	Least Mean Square Error Method with Statistics Techniques

	Experimental Results of Interface Residues Prediction
	Datasets
	PSSM Profiles
	Biochemical Properties
	Secondary Structure Information

	Results
	Conclusion
	References

	Dynamic Outlier Exclusion Training Algorithm for Sequence Based Predictions in Proteins Using Neural Network
	Introduction
	Methods
	Definition of an Outlier
	Treatment of Outliers
	Dynamic Identification of Outliers
	Data Sets and RLP Types
	Neural Networks

	Results and Discussion
	Outlier Exclusion Does Not Affect Generalization
	Error Distribution and History of Outlier Frequency
	Role of Data Sets
	Biological Basis of Prediction Outliers

	Conclusion
	References

	Bioinformatics on $\beta$-Barrel Membrane Proteins: Sequence and Structural Analysis, Discrimination and Prediction
	Introduction
	Materials and Methods
	Dataset
	Computation of Amino Acid and Dipeptide Compositions
	Discrimination Methods
	Assessment of the Validity of the Method

	Results and Discussion
	Amino Acid Composition
	Discrimination of $\beta$-Barrel Membrane Proteins
	Prediction of Membrane Spanning Segments
	Annotation of β-Barrel Membrane Proteins in Genomic Sequences

	Conclusions
	References

	Estimation of Evolutionary Average Hydrophobicity Profile from a Family of Protein Sequences
	Introduction
	Dataset and Methods
	Dataset
	Estimating Average Hydrophobicity Profile (HP)

	Results and Discussion
	Conclusions and Further Work
	References

	APMA Database for Affymetrix Target Sequences Mapping, Quality Assessment and Expression Data Mining
	Introduction
	Methods
	APMA Database and Statistical Assessment of Probesets Quality
	Statistics of Problematic Groups of Target Sequences
	Repeats in Tag1 Target Sequences
	Inversely Oriented Target Sequences
	Classification of Different Categories of Problematic Affymetrix Target Sequences
	Comparison of Mean Gene Expression Levels Detected by Different Classes of Problematic Target Sequences
	Comparison of U133A, U133B and Additional to U133 Plus2.0 GeneChips

	Discussion and Conclusion
	References

	Ensemble of Dissimilarity Based Classifiers for Cancerous Samples Classification
	Introduction
	Dissimilarities for Gene Expression Data Analysis
	Dissimilarity Based Classifiers
	Combination of Dissimilarity Based Classifiers
	Experimental Results
	Conclusions and Future Research Trends
	References

	Gene Expression Analysis of Leukemia Samples Using Visual Interpretation of Small Ensembles: A Case Study
	Introduction
	Interpretation Tool
	Experimental Settings and Results
	Interpretation of Results
	Conclusions and Future Work
	References

	Ant-MST: An Ant-Based Minimum Spanning Tree for Gene Expression Data Clustering
	Introduction
	Ant-MST: An Ant-Based Minimum Spanning Tree
	Ant-Based Clustering
	Minimum Spanning Trees
	Gene Expression Clustering Based on Ant-MST

	Experimental Results
	Setup
	Results

	Conclusions and Future Work
	References

	Integrating Gene Expression Data from Microarrays Using the Self-Organising Map and the Gene Ontology
	Introduction
	The Biological Basis of Microarray Technology
	Kohonen Self-Organising Feature Map (SOM)
	The Gene Ontology

	Experimental Results
	Data, Experimental Setup and Preprocessing

	Conclusions
	References

	Order Preserving Clustering by Finding Frequent Orders in Gene Expression Data
	Introduction
	Related Work
	Algorithm
	A Top Down Algorithm to Find Frequent Orders
	Minimum Support for the Frequent Order
	Find Proper Single Label When No Frequent Combination of Prefix and Suffix Exists
	Find Multiple OP-Clusters

	Experiments
	Synthetic Data
	Microarray Data

	Discussion
	References

	Correlation-Based Relevancy and Redundancy Measures for Efficient Gene Selection
	Introduction
	Correlation-Based Relevancy and Redundancy Measures for Gene Selection
	Relevancy and Redundancy Measures
	A New Approach to Redundancy Evaluation
	The Correlation Criteria-Based Gene Selection Algorithm

	Experimental Studies
	Conclusions
	References

	SVM-RFE with Relevancy and Redundancy Criteria for Gene Selection
	Introduction
	Method
	Minimum Redundancy Maximum Relevancy (MRMR) Criteria
	SVM-RFE

	SVM-RFE with MRMR Criteria
	Experiments
	Data
	Preprocessing
	Parameter Estimation
	Testing
	Results

	Discussion and Conclusion
	References

	$In Silico$ Expression Profiles of Human Endogenous Retroviruses
	Introduction
	Methods
	Data
	Results
	Closer Look on Individual Active HERVs

	Discussion and Conclusions
	References

	A Framework for Path Analysis in Gene Regulatory Networks
	Introduction
	Background
	Causal Model for GRN
	D-Separation
	Paths in a Markov Blanket

	The Algorithm for Path Analysis Framework
	The d-Separation Algorithm
	The Framework Algorithm

	Experiments and Results
	Conclusion
	References

	Transcriptional Gene Regulatory Network Reconstruction Through Cross Platform Gene Network Fusion
	Introduction
	Gene Regulatory Network Integration (GeNi) Model
	Pre-processing
	GRN Reconstruction
	Network Pruning
	Cross Platform GRN Fusion
	Network Comparison

	Analysis of Results and Discussion
	Conclusions
	References

	Reconstruction of Protein-Protein Interaction Pathways by Mining Subject-Verb-Objects Intermediates
	Introduction
	System Description
	Entity Normalization
	Text Analysis
	Protein-Protein Binding Finding

	Experimental Results
	Benchmarking Muscorian Performance
	Verifying Protein-Protein Binding Interactions
	Large Scale Mining of Protein-Protein Binding Interactions
	Pilot Study - Protein-Protein Activation Interactions

	Discussion
	References

	Validation of Gene Regulatory Networks from Protein-Protein Interaction Data: Application to Cell-Cycle Regulation
	Introduction
	Gene Regulatory Networks
	Dynamic Bayesian Networks
	Derivation of GRN Using a Genetic Algorithm
	Missing Data

	Mapping of GRN and PPI
	Protein-Protein Interaction Networks (PPIN)
	Motivation
	K-Skip Validati

	Cell-Cycle Regulation
	Data
	Experiments and Results

	Conclusion
	References

	Rough Sets and Fuzzy Sets Theory Applied to the Sequential Medical Diagnosis
	Introduction
	Preliminaries and the Problem Statement
	Algorithms of SC Based on Fuzzy Sets Theory
	Fuzzy Method with Mamdani Inference System
	Algorithms Using Fuzzy Relations

	Algorithms of SC Based on Rough Sets Theory
	Algorithm Without Context (Rough-0)
	Algorithm with k-th Order Context (Rough-k)

	Medical Example: Sequential Diagnosis of Acid-Base State Balance
	Conclusions
	References

	$In silico$ Identification of Putative Drug Targets in $Pseudomonas aeruginosa$ Through Metabolic Pathway Analysis
	Introduction
	Materials and Methods
	Identification of Unique Enzymes as Drug Targets
	Comparison of Unique Enzymes to Essential Gene Data
	Comparative Homology Modeling

	Results and Discussion
	Pathways and Enzymes Unique to P.aeruginosa When Compared to H.sapiens
	Targets from Pathways Common to Both P.aeruginosa and $H.sapiens$

	Conclusion
	References

	Understanding Prediction Systems for HLA-Binding Peptides and T-Cell Epitope Identification
	Introduction
	Materials and Methods
	Datasets
	SVM Regression Model and Peptide Coding Using Extra Epitope Information
	IEDB Prediction Models
	Performance Evaluation Methods

	Study Design
	SVR HLA-Binding Predictor
	Prediction of HLA-Binding Peptides in Survivin Protein
	Prediction of T-Cell Epitopes on HIV Proteins and Survivin Protein

	Results
	Cross-Validation Performance on the Eight HLA-Alleles
	Prediction of Binding Affinity along Survivin Protein Sequence
	Predictions of T-Cell Epitopes

	Conclusions
	Discussion
	References

	Predicting Binding Peptides with Simultaneous Optimization of Entropy and Evolutionary Distance
	Introduction
	Materials and Methods
	Peptide Sequence Dataset
	Peptide Sequence Clustering and Weighting
	Pseudo-count Correction
	Identification of Binding Core of Peptides
	Generating an Optimal Alignment

	Experiments and Results
	Discussion and Future Directions
	References

	3D Automated Nuclear Morphometric Analysis Using Active Meshes
	Introduction and Related Efforts
	MaterialandMethods
	Biological and Imaging Protocol
	Quantitative Analysis Method
	Statistical Analysis

	Experiments and Results
	Segmentation
	Shape Analysis

	Conclusion
	References

	Time-Frequency Method Based Activation Detection in Functional MRI Time-Series
	Introduction
	Methods
	Functional MRI Time Series

	Results and Discussion
	Synthetic Data
	Functional MRI Data

	Conclusion
	References

	High Performance Classification of Two Imagery Tasks in the Cue-Based Brain Computer Interface
	Introduction
	Subjects and Data Acquisition
	Feature Extraction
	Band Power (BP)
	Fractal Dimension (FD)

	Weighted Distance Nearest Neighbor (WDNN)
	Learning the Best Operating Point in 2-Class Problems
	Learning Weights of Training Instances

	Experimental Results
	Conclusion
	References

	Human Brain Anatomical Connectivity Analysis Using Sequential Sampling and Resampling
	Introduction
	Method
	Diffusion Tensor Estimation
	Estimation of Joint Posterior Distribution
	Sampling and Re-sampling Trajectory

	Results
	Conclusion
	References

	Classification of CT Brain Images of Head Trauma
	Introduction
	A Method for Automatic Classification of CT Brain Images
	Preprocessing
	Feature Extraction
	Classification

	Experimental Results
	Classification of Potential Hemorrhage Regions
	Classification of Images

	Conclusion
	References

	Author Index


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth 8
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.01667
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth 8
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.01667
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 2.00000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /SyntheticBoldness 1.000000
  /Description <<
    /DEU ()
    /ENU ()
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.000 842.000]
>> setpagedevice




